Problems downloading? Try clicking on the 'Send By Email' link above or use this direct link: ks3-mathematics-2008-level-5-7-paper-2.pdf

Ma Mathematics test KEY STAGE 3 TIER 5–7 Paper 2 Calculator allowed _______________________________________________ Last name _______________________________________________ School 2008 First name _______________________________________________ Remember The test is 1 hour long. You may use a calculator for any question in this test. You will need: pen, pencil, rubber, ruler, tracing paper (optional) and a scientiﬁc or graphic calculator. Some formulae you might need are on page 2. This test starts with easier questions. Try to answer all the questions. Write all your answers and working on the test paper – do not use any rough paper. Marks may be awarded for working. Check your work carefully. Ask your teacher if you are not sure what to do. For marker’s use only Sourced from SATs-Papers.co.uk 282672_p2_57.indd 1 TOTAL MARKS http://www.SATs-Papers.co.uk 30/11/07 21:09:31 Instructions Answers This means write down your answer or show your working and write down your answer. Calculators You may use a calculator to answer any question in this test. Formulae You might need to use these formulae Trapezium b Area = 1 (a + b)h 2 height (h) a Prism length area of cross-section Volume = area of cross-section × length KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 2 2 http://www.SATs-Papers.co.uk 30/11/07 21:09:32 Cube edges 1. Look at the diagram of Megan’s cube. E F H G D C A B Megan puts her ﬁnger on point A. She can move her ﬁnger along 3 edges to get from point A to point H without taking it off the cube. Complete the table below to show all 6 ways she can do this. One way is done for you. Ways of moving from A to H A B C H 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 3 3 http://www.SATs-Papers.co.uk 30/11/07 21:09:32 Track 2. (a) A straight piece of model car track is 20cm in length. 20cm How many of these straight pieces are needed to make a 1 metre track? 1 mark (b) A curved piece of track looks like this: 60° How many of these curved pieces are needed to make a complete circle of track? 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 4 4 http://www.SATs-Papers.co.uk 30/11/07 21:09:32 Matching expressions 3. Match each statement to the correct expression. The ﬁrst one is done for you. 2 Add 2 to a 2–a Subtract 2 from a a+2 2a Multiply a by 2 a–2 2 Divide a by 2 a a2 Multiply a by itself a 2 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 5 5 http://www.SATs-Papers.co.uk 30/11/07 21:09:32 Area, Values 4. Look at the shapes drawn on the centimetre square grid. For each one, work out the area that is shaded. The ﬁrst one is done for you. Area = 12 cm2 Area = cm2 Area = cm2 1 mark 5. (a) Look at the equation. n + 3 = 12 Use it to work out the value of n–3 1 mark (b) Now look at this equation. n+3=7 Use it to work out the value of n–6 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 6 6 http://www.SATs-Papers.co.uk 30/11/07 21:09:33 Symmetry patterns 6. (a) Shade two more squares on the shape below so that it has rotation symmetry of order 4 1 mark (b) Now shade four more squares on the shape below so that it has rotation symmetry of order 2 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 7 7 http://www.SATs-Papers.co.uk 30/11/07 21:09:33 Shop 7. Kim works in a shop. The shaded squares on the diagram below show the hours she worked in one week. Monday Tuesday Wednesday Thursday Friday Saturday 9 10 11 12 1 2 am 3 4 5 6 7 8 pm The table shows her pay for each hour worked. Pay for each hour worked Monday to Friday, 9am to 5pm £6.35 Monday to Friday, after 5pm £7.50 Saturday £7.50 KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 8 8 http://www.SATs-Papers.co.uk 30/11/07 21:09:33 Using algebra How much was Kim’s pay for this week? £ 2 marks 8. Here is some information about three people. Jo is 2 years older than Harry. Kate is twice as old as Jo. Write an expression for each person’s age using n The ﬁrst one is given. n Harry’s age Jo’s age 1 mark Kate’s age 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 9 9 http://www.SATs-Papers.co.uk 30/11/07 21:09:33 Goldbach 9. A famous mathematician claimed that: Every even number greater than 4 can be written as the sum of a pair of prime numbers. For example: 8 can be written as the sum of 3 and 5, and 3 and 5 are both prime numbers. (a) Write a pair of prime numbers that sum to 16 and 1 mark Now write a different pair of prime numbers that sum to 16 and 1 mark (b) Now choose an even number that is greater than 16, then write a pair of prime numbers that sum to your even number. Complete the sentence below. The even number can be written as the sum of the prime numbers and 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 10 10 http://www.SATs-Papers.co.uk 30/11/07 21:09:33 Side length 10. The diagrams show an equilateral triangle and a square. The shapes are not drawn accurately. 8.4cm The side length of the equilateral triangle is 8.4cm. The perimeter of the square is the same as the perimeter of the equilateral triangle. Work out the side length of the square. cm 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 11 11 http://www.SATs-Papers.co.uk 30/11/07 21:09:34 Value of x 11. (a) Look at the equation. 5x + 1 = 2x – 8 Complete the sentence below by ticking ( ) the correct box. The value of x is … … one particular number. … any number less than zero. … any number greater than zero. … any whole number. … any number at all. 1 mark (b) Now look at this equation. y = 3x – 2 Complete the sentence below by ticking ( ) the correct box. The value of x is … … one particular number. … any number less than zero. … any number greater than zero. … any whole number. … any number at all. 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 12 12 http://www.SATs-Papers.co.uk 30/11/07 21:09:34 Darts, Conversions 12. Gita threw three darts. Use the information in the box to work out what numbers she threw. The lowest number was 10 The range was 10 The mean was 15 Gita’s numbers were , and 1 mark 13. A cookery book shows this conversion table. Mass in ounces Mass in grams 1 25 2 50 3 75 4 110 5 150 10 275 Use the table to explain how you can tell the conversions cannot all be exact. 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 13 13 http://www.SATs-Papers.co.uk 30/11/07 21:09:34 Concorde, Counters in a bag 14. Concorde could travel 1 mile every 3 seconds. How many miles per hour (mph) is that? mph 2 marks 15. In a bag, there are only red, white and yellow counters. I am going to take a counter out of the bag at random. The probability that it will be red is more than 1 4 It is twice as likely to be white as red. Give an example of how many counters of each colour there could be. Write numbers in the sentence below. There could be red, white and yellow counters. 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 14 14 http://www.SATs-Papers.co.uk 30/11/07 21:09:34 Perimeters 16. (a) The perimeter of a regular hexagon is 42 a + 18 Write an expression for the length of one of its sides. 1 mark (b) The perimeter of a different regular polygon is 75 b – 20 The length of one of its sides is 15 b – 4 How many sides does this regular polygon have? 1 mark (c) The perimeter of a square is 4 ( c – 9 ) Find the perimeter of the square when c = 15 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 15 15 http://www.SATs-Papers.co.uk 30/11/07 21:09:34 Yoghurt, Lawn 17. A dessert has both fruit and yoghurt inside. Altogether, the mass of the fruit and yoghurt is 175g. The ratio of the mass of fruit to the mass of yoghurt is 2 : 5 What is the mass of the yoghurt? g 2 marks 18. The diagram shows a plan of Luke’s new lawn. The lawn is a circle with radius 3m. Work out the area of the lawn. 3m m2 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 16 16 http://www.SATs-Papers.co.uk 30/11/07 21:09:35 Triangular numbers To ﬁnd the n th triangular number, you can use this rule. 19. n th triangular number = n ( n + 1 ) 2 Example: 3rd triangular number = 3 ( 3 + 1) 2 = 6 (a) Work out the 10th triangular number. 1 mark (b) Now work out the 100th triangular number. 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 17 17 http://www.SATs-Papers.co.uk 30/11/07 21:09:35 Journeys 20. (a) The graphs show information about the different journeys of four people. Ann Ben Distance from starting point 0 Distance from starting point 0 Time Dee Chris Distance from starting point Distance from starting point 0 Time Time 0 Time Write the correct names next to the journey descriptions in the table below. Name Journey description This person walked slowly and then ran at a constant speed. This person walked at a constant speed but turned back for a while before continuing. This person walked at a constant speed without stopping or turning back. This person walked at a constant speed but stopped for a while in the middle. KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 18 1 mark 18 http://www.SATs-Papers.co.uk 30/11/07 21:09:35 (b) Ella made a different journey of 4km. She walked to a place 4km away from her starting point. Here is the description of her journey. For the ﬁrst 15 minutes she walked at 4km per hour. For the next 15 minutes she walked at 2km per hour. For the last 30 minutes she walked at a constant speed. Show Ella’s journey accurately on the graph below. Ella 4 3 Distance from starting point 2 (km) 1 0 2 marks 0 10 20 30 40 50 60 Time (minutes) (c) For the last 30 minutes of her journey, what was Ella’s speed? km per hour 1 mark KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 19 19 http://www.SATs-Papers.co.uk 30/11/07 21:09:35 Isosceles triangle 21. Look at triangle ABC. ABD is an isosceles triangle where AB = AD. A y x z Not drawn accurately 28° 74° B C D Work out the sizes of angles x, y and z Give reasons for your answers. x= y= z= ° ° ° because because because 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 20 20 http://www.SATs-Papers.co.uk 30/11/07 21:09:36 Special offer 22. A shop has this special offer. Reduction of 10% when your bill is between £50 and £100 Reduction of 20% when your bill is more than £100 Before the reductions, Marie’s bill is £96 and Richard’s bill is £108 After the reductions, who paid more? You must show working to explain your answer. Tick ( ) the correct answer. Marie Richard Both paid the same 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 21 21 http://www.SATs-Papers.co.uk 30/11/07 21:09:36 Planes 23. The scatter graph shows the maximum number of passengers plotted against the wingspans of some passenger planes. 600 500 400 Number of 300 passengers 200 100 0 0 10 20 30 40 50 60 70 80 Wingspan (m) (a) What type of correlation does the scatter graph show? 1 mark (b) Draw a line of best ﬁt on the scatter graph. 1 mark (c) Another passenger plane has a wingspan of 40m. The plane is full of passengers. If each passenger takes 20kg of bags onto the plane, estimate how much their bags would weigh altogether. kg 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 22 22 http://www.SATs-Papers.co.uk 30/11/07 21:09:36 Cubes 24. Kaylee has some 1cm cubes. She makes a solid cube with side length 6cm out of the cubes. Not drawn accurately Then she uses all these cubes to make some cubes with side length 2cm. How many of these 2cm cubes can Kaylee make? 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 23 23 http://www.SATs-Papers.co.uk 30/11/07 21:09:36 Best buy 25. You can buy jars of the same jam in two sizes. A B 454g for £1.59 340g for £1.25 Which jar is better value for money? You must show working to explain your answer. Tick ( ) your answer. A B 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 24 24 http://www.SATs-Papers.co.uk 30/11/07 21:09:36 Shadows 26. Tom’s height is 1.8m. He stands near a tree. Height of tree 1.8m 2.7m Not drawn accurately 6.3m At 4pm, the length of Tom’s shadow is 2.7m. At 4pm, the length of the tree’s shadow is 6.3m. What is the height of the tree? m 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 25 25 http://www.SATs-Papers.co.uk 30/11/07 21:09:37 1, 2, 4 Here are the nth term expressions for three different sequences. 27. ( n – 1) 2 Sequence A n2 – n + 2 n ( n2 – 3n + 8 ) 2 6 Sequence B Sequence C The ﬁrst three terms of each sequence are 1, 2 and 4 What is the 4th term of each sequence? You must show your working. Sequence A Sequence B Sequence C 3 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 26 26 http://www.SATs-Papers.co.uk 30/11/07 21:09:37 Triangles 28. Look at this triangle. A C Work out length AC. 9cm 17cm Not drawn accurately B AC = cm 2 marks KS3/08/Ma/Tier 5–7/P2 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 27 27 http://www.SATs-Papers.co.uk 30/11/07 21:09:37 END OF TEST © Qualifications and Curriculum Authority 2008 Sourced from SATs-Papers.co.uk 282672_p2_57.indd 28 QCA/08/3292 (Pupil pack) QCA/08/3286 (Mark scheme pack) http://www.SATs-Papers.co.uk 282672 30/11/07 21:09:37

Thank You!

You can now access all our free SATs, Phonics and 11+ resources!

Best wishes,

SATs-Papers.co.uk