MATHEMATICS

KEY STAGE 22001

CALCULATOR ALLOWED

PAGE	MARKS
3	
5	
7	
9	
11	
12	
TOTAL	

First Name

Last Name

School

Instructions

You may use a calculator to answer any questions in this test.

Work as quickly and as carefully as you can.
You have $\mathbf{3 0}$ minutes for this test.
If you cannot do one of the questions, go on to the next one.
You can come back to it later, if you have time.
If you finish before the end, go back and check your work.

Follow the instructions for each question carefully.
\This shows where you need to put the answer.
If you need to do working out, you can use any space on a page.

Some questions have an answer box like this:

For these questions you may get a mark for showing your method.

Formulae

You might need to use these formulae in this test.

'subtract 10, then divide by 10'

Write the two numbers missing from the sequence.
 which multiply to make 0.1

3 This four digit number is a square number.

Write in the missing digits.

This is a graph of a firework rocket, showing its height at different times.

Estimate from the graph for how many seconds the rocket is more than $\mathbf{2 0}$ metres above the ground.

Estimate from the graph how many metres the rocket falls in the last second of its flight.

Calculate the size of the angle x and angle y.

Do not use a protractor (angle measurer).

1 mark

5b
1 mark

$$
7+4 u=70-3 u
$$

The population of the world is approximately 6200 million people.

It is increasing by approximately 93 million people each year.

Use this information to calculate the percentage increase in the population over a year.

Mike says,
'An increase of 93 million people each year is more than 170 people each minute'.

Show that he is correct.

number of octagons (n)	number of squares (q)
1	4

The sequence continues.

How many squares will there be in the pattern that has 40 octagons?

q represents the number of squares.
n represents the number of octagons.

What is the rule connecting \mathbf{q} and \mathbf{n} ?

\qquad

A cuboid has a square base.
It is twice as tall as it is wide.
Its volume is $\mathbf{2 5 0}$ cubic centimetres.

Not actual size

Calculate the width of the cuboid.

The rectangle measures $\mathbf{3 6}$ centimetres by $\mathbf{2 4}$ centimetres.

Calculate the area of one shaded triangle.

P stands for a multiple of 3

Q stands for a different multiple of 3

Tick $(\boldsymbol{\checkmark})$ each statement according to whether it is always true, sometimes true or never true.

The sum of P and Q is a multiple of 6

The difference between P and Q is a multiple of 3

The product of P and Q is a multiple of 9

always true	sometimes true	never true

12 The diagram shows the graph of $y=x-7$

Write the coordinates of one point on the line between \mathbf{A} and \mathbf{B}.

13

Carol counts the matches in 10 boxes.
She works out that the mean number of matches in a box is 51 Here are her results for 9 boxes.

Number of matches in a box						
48	49	50	51	52	53	54
	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
	\checkmark	\checkmark				\checkmark
	\checkmark					

Calculate how many matches are in the 10th box.

K is the point $(20,10)$

What are the coordinates of \mathbf{L} and \mathbf{M} ?

15

In a survey, the ratio of the number of people who preferred milk chocolate to those who preferred plain chocolate was 5:3

46 more people preferred milk chocolate, to plain chocolate.

How many people were in the survey?

[Blank page]

© Qualifications and Curriculum Authority 2001

QCA key stage 2 team, 83 Piccadilly, London W1J 8QA

Order refs:

QCA/01/702 (Pupil pack)
QCA/01/695 (Mark schemes pack)

