Ma

YEAR
7

LEVELS

3-4

2005

Year 7 progress test in mathematics

Mark scheme for Paper 1, Paper 2 and Mental mathematics

department for

Introduction

The test papers will be marked by external markers. The markers will apply the mark schemes in this booklet, which is provided here to inform teachers.

This booklet contains the mark schemes for Paper 1, Paper 2 and the mental mathematics test. Questions have been named so that each one has a unique identifier.

The structure of the mark schemes

The marking information for questions in the written tests is set out in the form of tables, which start on page 11 (Paper 1) and page 21 (Paper 2) of this booklet. The two columns on the left-hand side of each table provide a quick reference to the question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative
- examples of some different types of correct response, including the most common and the minimum acceptable.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a Using and applying mathematics element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark schemes state otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance, relating to marking of questions that involve money, time, algebra, coordinates or negative numbers. Unless otherwise specified in the mark schemes, markers should apply the following guidelines in all cases.

What if ...

The pupil's response does not match closely any of the examples given.	Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the Correct response column. Refer also to the Additional guidance column.
The pupil has responded in a non-standard way.	Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.
The pupil has made a conceptual error.	In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a slip such as writing $4 \times 6=18$ in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen, no method marks may be awarded. Examples of conceptual errors are: misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating 35×27; subtracting the smaller digit from the larger in calculations such as $45-26$ to give the answer 21; incorrect signs when working with negative numbers.
The pupil's accuracy is marginal according to the overlay provided.	Overlays can never be 100% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.
The pupil's answer correctly follows through from earlier incorrect work.	Follow through marks may be awarded only when specifically stated in the mark schemes, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow through response should be marked as correct.
There appears to be a misreading affecting the working.	This is when the pupil misreads the information given in the question and uses different information. If the original intention or difficulty level of the question is not reduced, deduct one mark only. If the original intention or difficulty level is reduced, do not award any marks for the question part.
The correct answer is in the wrong place.	Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark schemes, and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether:			
	the incorrect answer is due to a transcription error	If so, award the mark.		
in questions not testing accuracy, the correct answer				
has been given but then rounded or truncated			\quad If so, award the mark. \quad	the pupil has continued to give redundant extra
:---				
working which does not contradict work already done				

Marking specific types of question

Responses involving money

For example: $£ 3.20$ £ 7

Accept \checkmark	Do not accept x
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, £3-20, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320 p 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{array}{ll} \text { eg } & £ 3.2, £ 3 \text { 200, } £ 320, \\ & £ 3-2-0, \\ & £ 7.0 \end{array}$

Responses involving time	
Accept \checkmark	Take care! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used
A specific time For example: 8.40 am	17:20
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as 5:20pm, 17:20pm	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving the use of algebra

For example: $2+n \quad n+2$ 2n $\frac{n}{2} n^{2}$

Responses involving coordinates For example: (5,7)	
Accept $/$	Do not accept \times
$\begin{aligned} & \checkmark \text { Unconventional notation } \\ & \text { eg }(05,07) \\ &(\text { five, seven }) \\ &(5, y) \\ &(x=5, y=7) \end{aligned}$	x Incorrect or ambiguous notation eg $(7,5)$ $\begin{array}{cc}y & x \\ (7,5)\end{array}$ ($5 x, 7 y$) $\left(5^{x}, 7^{y}\right)$ $(x-5, y-7)$

Responses involving negative numbers
For example: -2

Accept \checkmark	Do not accept \times
	To avoid penalising the error below more than once within each question, do not award the mark for the first occurrence of the error within each question. Where a question part carries more than one mark, only the final mark should be withheld
\timesIncorrect notation eg 2-	

Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

0
The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 100 marks is available (40 from Paper 1, 40 from Paper 2 and 20 from the mental mathematics test).

Awarding levels

The sum of the marks gained on Paper 1, Paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk from 20 June 2005. QCA will also send a copy to each school by 1 July 2005.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

BLANK PAGE

Mark scheme for Paper 1

Question	\quad Making models		
$\mathbf{1}$		Correct response	Additional guidance
	1 m	12	

Question			
$\mathbf{2}$		Correct response	Working OUt
	1 m	27	
	1 m	26	

Question	Same values?		
3		Correct response	Additional guidance
a	1m	Indicates Yes and gives a correct explanation The most common correct explanations: Complete the calculations eg - $17+15=32$ and $2 \times 16=32$ - They are both 32 - $10+10=20,7+5=12$ and $2 \times 10=20,2 \times 6=12$ Use knowledge of near doubles eg - Subtract 1 from 17 and add it to the 15 and you have $16+16$ which is the same as 16×2 - Double $15=30$ then add 2 and it's the same as double 16	\checkmark Minimally acceptable explanation eg - 32 seen, with no evidence of incorrect working - $20+12$ and $20+12$ \times Incomplete explanation eg - $17+15=2 \times 16$ - Same answer - I did the calculations \checkmark Minimally acceptable explanation eg - $16+1+16-1=2 \times 16$ - $17+15=16+16$ \times Incomplete explanation eg - $17+15=2 \times 16$
b	1 m	17	
c	1m	3	! Answer of 3×1 Condone

Question	Coins		
4		Correct response	Additional guidance
	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	57 p Shows the digits 57 or Shows the digits 105 and 48 or Shows the digits $1(00)$ and 43 with no evidence of an incorrect method or incorrect units or Shows a complete correct method with not more than one error eg - $100-48+5$ - $£ 1.05-38 p$ (error) $=67$! For 1m, units incorrect or inconsistent Condone provided no ambiguity between pounds and pence is caused eg , for 1 m accept - $1-48=42$ (error) [attempt is $100-48$] $42+5=47$ eg, for 1 m do not accept - $1-48=47$ (error) [attempt is $48-1$] $47+5=52$

Question			Beanbag
5		Correct response	Additional guidance
a	1m	Indicates only the correct beanbag, ie	! Other beanbags indicated Ignore marks made on any beanbags inside the 100 cm circle as these may have been used for part (b) Do not accept any other beanbags indicated
b	1 m	8	
c	U1	6	

Question			Decimals
6		Correct response	Additional guidance
a	1m	Gives any pair of decimal numbers that add to 1 other than those given eg - 0.10 .9 - 0.50 .5 - 0.750 .25 - 1.2 -0.2	\times Whole numbers or fractions eg - 1.00 .0 - $\frac{1}{4} \frac{3}{4}$ \times Given pair in reverse order eg - 0.70 .3
b	1 m	0.15 or equivalent decimal	\times Equivalent fractions

Question			Cost of pens
8		Correct response	Additional guidance
	2m or 1m (U1)	$£ 1.30$, with no evidence of incorrect working Shows the value 1.3 or 130, with no evidence of incorrect working or Shows the digits 39(0) or Shows a complete correct method with not more than one computational error, provided their value is rounded or truncated to the nearest penny eg - $\begin{array}{r}5-1.10=4.90 \\ 4.90 \div 3=1.63\end{array}$	\times Incorrect working eg $\begin{gathered} 5-1.10=4.90 \\ 4.90 \div 3=1.30 \end{gathered}$ \mathbf{x} Conceptual error eg $\begin{aligned} & 5-1.10=4.10 \\ & 4.10 \div 3=1.37 \end{aligned}$

Question	Completing calculations		
9		Correct response	Additional guidance
	1m 1m	Gives any three numbers that combine as shown to give 60 eg - $100+20-60$ - $60+1-1$ - $60+60-60$ Gives any three numbers that combine as shown to give 0.6 eg - $0.5+0.5-0.4$ - $2+1-2.4$ - $0.6+1-1$	\checkmark Fractions, decimals or negatives \checkmark Zero(s) used

Question			Using rules
10		Correct response	Additional guidance
a	1m	Gives both correct numbers in the correct positions, ie 3 and 35	
b	2m or 1m	Gives both correct numbers in the correct positions, ie 5 and 95 Gives one correct number in the correct position	

Question			How many?
11		Correct response	Additional guidance
a	1m	10	```\checkmark Throughout the question, responses embedded eg, for part (a) - 10\times4```
b	1m	5	! Follow through For part (b), accept follow through as their (a) $\div 2$
c	1m	80	! Follow through For part (c), accept follow through as either their $(\mathrm{a}) \times 8$ or their $(\mathrm{b}) \times 16$

Question	Youth club		
12		Correct response	Additional guidance
a	1 m	10	
b	1 m	6	
c	2m or 1m	Completes the dot plot correctly, ie or Completes a dot plot that satisfies at least four of the following six conditions, even if there are other errors 1. There is a total of 14 dots 2. Age 11 has 3 dots 3. Only age 9 and age 14 have no dots 4. Age 13 has the greatest number of dots 5. Age 12 has more dots than age 11 6. Age 10 has at least one dot or Shows or implies either set of correct values for the ages, even if the dot plot is incorrect or omitted eg - (0), 2, 3, 4, 5, (0) - (0), $1,3,4,6,(0)$! Symbols not shaded, accurate or grouped in a straight line For 2 m or 1 m , condone provided the number of symbols is unambiguous for each age

Question			Angles in a square
$\mathbf{1 4}$			Additional guidance
a	1 m	90	Correct response Throughout the question, incorrect units inserted Ignore b 1 m

Question	Multiplication		
15		Correct response	Additional guidance
	1m	150	
	2m or 1m	Shows a complete correct method with not more than one computational error eg - $6 \times 25=150$ $10 \times 25=250$ $16 \times 25=150+250$ - $16 \times 20=320$ $16 \times 5=80,320+80$ - $16 \times 100=1600$ $1600 \div 2=800$ $800 \div 2$ - 10 6 20 200 120 5 50 25 (error)$200+120+50+25=395$ - $\begin{array}{r}16 \\ \hline 25 \\ \hline 320\end{array}$ $\frac{80}{300}$ (error)	! For $2 m$ or $1 m$, follow through For 2 m , accept a correct evaluation of ($250+$ their answer to 6×25) For 1 m , accept a correct method eg, for 1 m accept - $10 \times 25+$ their answer to 6×25 - $250+$ their answer to 6×25 \times For 1m, conceptual error eg $\begin{array}{r} 16 \\ 25 \\ \hline 32 \\ \frac{80}{112} \end{array}$! Method is repeated addition For 1m, at least some multiplication must be shown or implied eg, for 1 m do not accept - $16+16+\ldots . .+16$ [shown 25 times]

Question	Areas		
16		Correct response	Additional guidance
a	1 m	4	
b	1 m	2	\checkmark Follow through as their $(a) \div 2$

Question			Pairs of values
17		Correct response	Additional guidance
a	1m (U1)	Gives two correct pairs of values for x and y that add to 30 eg - $\begin{aligned} x & =10, y=20 \\ x & =15, y=15\end{aligned}$ - $x=1, y=29$ $x=30, y=0$	\checkmark Fractions, decimals or negatives ! Same values repeated, but order reversed As this still gives different values for x and y, condone eg $\begin{aligned} & x=10, \\ & x=20, \\ & x=20 \\ & \end{aligned}$
b	1 m	10	```x Incomplete processing eg -40 - 30 * Answer of -10```

Mark scheme for Paper 2

Question			Number lines
1		Correct response	Additional guidance
a	1m	Indicates the value 26 , ie	! Inaccurate indication Accept provided the pupil's intention is clear \checkmark Unambiguous indication eg
b	1 m	105	

Question	Shopping			
$\mathbf{2}$			Correct response	
	1 m	$£ 5.36$		
Additional guidance				

\begin{tabular}{|c|c|c|c|}
\hline Question \& \& \& Times

\hline 3 \& \& Correct response \& Additional guidance

\hline a \& 1 m

1 m \& \begin{tabular}{l}
Completes the missing time correctly eg

- 06:45

- 6:45 am

Completes the missing time correctly eg

- 19:15

- $7: 15 \mathrm{pm}$

 \&

! For the first mark, indication of am unconventional or omitted Condone, but do not accept incorrect times eg, accept

- 6:45 morning

- 6:45

eg, do not accept

- 6:45 pm

- 18:45

! For the second mark, indication of $p m$ unconventional or omitted

Do not accept any indications other than the 24 hour clock and/or pm

eg, accept

- 19:15pm

eg, do not accept

- 7:15

- 7:15 in the evening
\end{tabular}

\hline b \& 1 m \& | Completes the missing time correctly eg |
| :--- |
| - 9 pm |
| - Nine o'clock at night | \& | ! Indication of pm unconventional or omitted Condone any unconventional indication eg, accept |
| :--- |
| - 9 o'clock afternoon |
| Accept indication of pm omitted only if this error has already been penalised for the second mark in part (a) |
| \mathbf{x} Time not interpreted |
| eg |
| - 21pm |
| - Twenty-one hundred hours |

\hline
\end{tabular}

Question			
4		Correct response	Titles
a	1 m	10	
b	1 m	14	
c	1 m	3	

Question			Units
5		Correct response	Additional guidance
a	1m	Indicates No and gives a correct explanation eg - 100 cm is 1 metre - 1000 mm is 1 m , not 1000 cm - $1000 \mathrm{~cm}=10$ metres not 1 metre	\checkmark Minimally acceptable explanation eg - 100 - 1000 mm - 10 m ! Explanation uses known measurement(s) Accept provided there is a comparison eg, accept - I would be less than 1 metre tall but I am 1.27 metres tall - The door is 2 m high, not 0.2 m eg, do not accept - I would be less than a metre tall - The door is not 0.2 m high ! Response contains an incorrect statement Ignore alongside a correct response eg, accept - $100 \mathrm{~cm}=1 \mathrm{~m}$, so $1000 \mathrm{~cm}=1 \mathrm{~km}$ eg, do not accept - $1000 \mathrm{~cm}=1 \mathrm{~km}$ \times Incomplete explanation eg - 1000 - 10
b	1m	10	

Question			Rounding
6		Correct response	Additional guidance
	1m	Indicates that the amount was rounded to the nearest hundred pounds eg - Hundred - 100	! Units repeated eg - $£ 100$ Condone \times Ambiguous spelling eg - Hundredth - Hundreth

Question	Shading fractions										
7		Correct response	Additional guidance								
a	1m	Indicates only the correct shape, ie									
b	1 m	Indicates No and gives a correct explanation The most common correct explanations: Show or imply the correct evaluation of both calculations eg - $\frac{1}{2}$ of $20=10$ and $\frac{1}{4}$ of $40=10$ - They both equal 10 -10 10 10 10 10 10 - $\frac{1}{2}$ of $20=\frac{1}{4}$ of 40 Use ratio eg - 20 doubled is 40 and half of $\frac{1}{2}$ is $\frac{1}{4}$	\checkmark Minimally acceptable explanation eg - 10, 10 seen - Equal - Same $\square\\|\\|\\|\\|\\|\\|\\|\\|$ \times Incomplete explanation eg - 10 seen - $\frac{1}{2}$ of 20 is 10 - $\frac{1}{4}$ of 40 is 10 \checkmark Minimally acceptable explanation eg - $20 \times 2=40, \frac{1}{2} \div 2=\frac{1}{4}$ - 20 is half of 40 and 2 is half of 4 - You have doubled the number and halved the fraction \times Incomplete explanation eg - $\frac{1}{2}$ is double $\frac{1}{4}$ - It's just doubled								

Question			
8			Number line again
	1 m	-2	Additional guidance
	1 m	12	

Question	Place value		
9		Correct response	Additional guidance
a	1m	Indicates the correct number, ie 47 407 4007 $40007 \quad 400007$	
b	1m	3000000	! Unconventional grouping of digits Accept any groupings provided the digits are correct \mathbf{x} Value given in words

Question			Turning direction
10		Correct response	Additional guidance
a	1m	West	\checkmark Unambiguous indication eg, for part (a) - W
b	1m	South	
c	1m	45	$\checkmark-45$
			! Angle greater than 360 Accept any multiple of $360+45$ eg - 405

Question			Moving on a grid
11		Correct response	Additional guidance
a	1m	$(5,5)$	
b	1m	Gives a correct pair of coordinates for a point on the line shown $[y=x+2]$ eg - $(0,2)$ - $(2,4)$ - $(3.5,5.5)$	\checkmark Response assumes the line continues as a straight line eg - $(8,10)$ - $(-2,0)$ - $(x, x+2)$

Question			Multiplying chain
12		Correct response	Additional guidance
	1 m	1008	
	1 m	24	

Question	Primary schools		
13		Correct response	Additional guidance
		Completes the pie chart correctly eg Indicates all four sectors correctly but fails to label or labels incorrectly or Indicates and labels at least two of the sectors correctly or Indicates the size of all four sectors and labels them correctly, but the sectors are not continuous eg	\checkmark Unambiguous labelling eg ! Lines not ruled or accurate Accept provided the pupil's intention is clear \times For sectors representing Grange and Park, line indicating 5% incorrect or omitted eg

Question	Thinking fractions		
14		Correct response	Additional guidance
a	1 m	Indicates No and gives a correct explanation The most common correct explanations: Show or imply the correct sum eg - $\frac{1}{4}+\frac{1}{4}=\frac{2}{8}+\frac{2}{8}$ $=\frac{4}{8}$ - $\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$, but $\frac{2}{8}=\frac{1}{4}$ - $0.25+0.25=0.5$ and $0.5=\frac{4}{8}$ Give a correct and comparable calculation that gives $\frac{2}{8}$ eg - $\frac{1}{4}+0=\frac{2}{8}$ - $\frac{1}{4}=\frac{2}{8}$ so you can't add another $\frac{1}{4}$ - $\frac{1}{8}+\frac{1}{8}=\frac{2}{8}$ Address the misconception eg - Sam has just added the top numbers together and the bottom numbers together and you can't add fractions like that - You don't need to change the bottom number, just add the top ones together	\checkmark Minimally acceptable explanation eg - $\frac{4}{8}$ - $\frac{2}{4}$ - $\frac{1}{2}$ - Half \checkmark Minimally acceptable explanation eg - $\frac{1}{4}=\frac{2}{8}$ \checkmark Minimally acceptable explanation eg - He added the top and bottom numbers together - You only add the top numbers [denominator unchanged implied] - You don't add the bottom numbers [numerators added implied] \mathbf{x} Incomplete explanation eg - You add the numerators - You keep the denominator the same

Question			Thinking fractions (cont)
14		Correct response	Additional guidance
b	1m	Indicates 5	! Answer repeats fifths Condone eg, accept - $\frac{5}{5}$ - $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$! The stated $\frac{1}{5}$ not included Accept provided it is clear that it is not included eg, accept - 4 more - An extra $\frac{4}{5}$ eg, do not accept - 4

Question	Three odds		
16		Correct response	Additional guidance
	1m	Indicates No and gives a correct explanation The most common correct explanations: Give a counter example eg - $1+3+5=9$, which is odd not even Make a general statement eg - An odd + another odd $=$ an even Then even + the third odd = odd So the answer will always be odd - Odd numbers are just even numbers plus 1, and even + even + even $=$ even and even $+3=$ odd	\checkmark Minimally acceptable explanation eg - $1+3+5=9$ - $1+3+5$ = odd ! Odd numbers taken to be the same Accept, even if the odd number repeated is 3 eg, accept - $3+3+3=9$ - $3 \times 3=9$! Calculations or statements given that do not relate to the given statement or are incorrect Ignore alongside a correct counter example ! Incomplete explanation eg - $1+3+5$ \checkmark Minimally acceptable explanation eg - Odd + odd $=$ even, even + odd $=$ odd - Even + even + even $+3=$ odd ! Odd numbers taken to be the same Condone eg, accept - $3 \times$ odd is odd \times odd which always gives odd \mathbf{x} Incomplete or incorrect explanation eg - Adding three odd numbers does not make an even number - Odd \times odd $=$ odd - When you add all odd numbers it will always come to an odd number

Question			Calculators
17		Correct response	Additional guidance
a	1 m	28	! Parts (a) and (b) transposed but otherwise correct Mark as 0,1
b	1 m	24	

Question					158
$\mathbf{1 8}$		Correct response	Additional guidance		
	1 m	632			
	U1				

Question	Block of three		
19		Correct response	Additional guidance
	2m or 1m U1	Shows or implies correct dimensions for the large rectangle, even if there is further incorrect working eg - 12 cm by 8 cm - $4+4+8+4+8+4+8$ - 20×2 - 12×8 (= 96)	\checkmark For 1m, minimally acceptable implication eg - Four 4 s and three 8 s seen, with the intention to add also shown

Question	Boxes of counters		
20		Correct response	Additional guidance
a	1m	Indicates box A and gives a correct explanation The most common correct explanations: State or imply that there are the same number of white counters in each, but different numbers of black counters or different totals eg - There are the same number of white in each box, but in box B there are more black, so you are less likely to get white from box B - Both boxes have three white but B has one extra black so there is more chance of picking a black from B - There's the same number of whites in both, but in A it's out of a smaller total Show the probabilities of getting a white counter or a black counter eg - The probability of getting a white counter is $\frac{3}{4}$ for box A but $\frac{3}{5}$ for box B - For black it's 25% for A and 40% for B	\checkmark Minimally acceptable explanation eg - Same white, fewer black - 3 white, but only one black - 3 white, but more black in B - Same number of white but fewer counters - 3 is out of fewer counters \times Response details the number of white and black counters with no comparison shown or implied eg - A has 3 white and 1 black B has 3 white and 2 black x Incomplete explanation eg - There is the same number of white counters in each box - It's only got one black counter - Fewer black counters in A - There are more black in B - It is out of more counters in B ! Numerical probability unconventionally or incorrectly expressed As this is a level 4 mark, condone even if the comparison is not explicit, provided the correct box is ticked eg, accept - A is 3 in $4, B$ is 3 in 5 - 3 W to $1 \mathrm{~B}, 3 \mathrm{~W}$ to 2 B - For black it's 1 out of 4 and 2 out of 5 \times Incomplete explanation eg - There's a greater probability of choosing a white counter from box A - B is the best box for getting a black counter

Question			Boxes of counters (cont)
20		Correct response	Additional guidance
b	1 m	Indicates equal numbers of black and white counters	\checkmark Unambiguous indication eg - Filled circle for black, unfilled circle for white ! Number of black and white counters is zero Accept only if at least one counter clearly labelled with another colour is given Do not accept no counters given ! Counters clearly labelled with other colours alongside black and white counters Ignore

Question	Flats		
$\mathbf{2 1}$		Correct response	Additional guidance
a	1 m	Gives the values $37,38,39,40$ in any order	
b	1 m	15	
	U1		

'Now we are ready to start the test.
For the first group of questions you will have 5 seconds to work out each answer

1	Look at the numbers on your answer sheet. Add them.
2	Double seventeen.
3	How many sides does a hexagon have?
4	What is fifty per cent of sixty?
5	What is four hundred divided by one hundred?

'For the next group of questions you will have 10 seconds to work out each answer

6	Look at the calendar for the month of April. Alice was born on the twenty-second of the month. On what day was Alice born?
7	What is a quarter of twenty-four?
8	Look at the scale on your answer sheet. What value is the arrow pointing to?
9	Estimate the length of the line on your answer sheet in centimetres.
10	The line graph shows the temperature during one afternoon. At what time was the highest temperature?

'Now turn over your answer sheet.'

'For the next group of questions you will have 15 seconds to work out each answer
and write it down.'

16	$\begin{array}{l}\text { The bar chart shows pupils' favourite colours. } \\ \text { Altogether, how many pupils are there? }\end{array}$
17	$\begin{array}{l}\text { The table shows the cost of a pen and a pencil. } \\ \text { I buy two pens and two pencils. } \\ \text { How much does that cost altogether? }\end{array}$
18	$\begin{array}{l}\text { Look at the sequence of numbers going down in steps of four. } \\ \text { Write down the next two numbers in the sequence. }\end{array}$
19	$\begin{array}{l}\text { The pie chart shows how some pupils travel to school. } \\ \text { About what percentage of the pupils cycle to school? }\end{array}$
20	$\begin{array}{l}\text { Look at the shaded shape drawn on a centimetre square grid. } \\ \text { What is its area? }\end{array}$

[^0]Year 7 progress test in mathematics 2005
Mental mathematics

Mark scheme

Time: 10 seconds

6	Friday	Accept any unambiguous indication, eg Fri or F

7	6	

8	25 g	

Time: 5 seconds

Time: 10 seconds continued
Time: 15 seconds continued

11	23	

13	$2{ }^{\circ} \mathrm{C}$	

14	49	

15	11	Accept embedded responses, eg $4 \times 11=44$

Time: 15 seconds

16	22 pupils	

NATIONAL
CURRICULUM
5-16

GCSE

GNVQ

GCE A LEVEL

NVQ

OTHER

VOCATIONAL
QUALIFICATIONS this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:
QCA Orderline, PO Box 29, Norwich NR3 1GN
tel: 08700 606015; fax: 08700606017
email: orderline@qca.org.uk

[^0]: 'Put your pens down. The test is finished.'

