Ma

KEY STAGE

Year 7 optional mathematics tests

 Teacher's guide
LEVELS
 4-6

Paper 1

Paper 2

QCDA wishes to make its publications widely accessible.
Please contact us if you have any specific accessibility requirements.

First published 2007
Updated 2011
© Qualifications and Curriculum Development Agency 2011
ISBN 978-1-84962-436-7

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, providing full acknowledgement is given.

Printed in Great Britain by the Qualifications and Curriculum Development Agency under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

Qualifications and Curriculum Development Agency
53-55 Butts Road
Earlsdon Park
Coventry
CV1 3BH
http://www.qcda.gov.uk
The 2011 year 7 optional mathematics tests and mark schemes were developed by the National Foundation for Educational Research (NFER) on behalf of QCDA.
Contents
Page
Introduction 3
Supporting teacher assessment 5
Section A: Formal administration 6
Administering the tests 6
Access arrangements 9
Marking the tests 10
General guidance for marking 12
Mark scheme for Paper 1 20
Mark scheme for Paper 2 36
Section B: Using the outcomes of the tests 50
Level thresholds 50
Key findings and useful information 52

BLANK PAGE

Introduction

The year 7 optional mathematics tests provide schools with a tool to help monitor pupils' progress against national standards in key stage 3 and an instrument for gathering assessment evidence in support of teacher judgements.

The test materials may be used in whole or in part at any point during key stage 3 to provide valuable qualitative information about pupils' strengths and weaknesses. Teachers may choose to use the materials alongside written work, class discussions and group activities in a variety of contexts. When used in this way the materials can yield evidence in support of teacher assessment, including national curriculum level judgements.

The tests follow a similar structure to the previously statutory end of key stage 3 mathematics tests taken by pupils in year 9 . They can be administered and marked formally, and the results may be used to determine a national curriculum level. Even when used in this way, there is still useful additional information that can be discerned from pupils' responses. This guide explains the options in more detail.

The mathematics tests are available in two tiers, covering levels 3-6. This Teacher's guide is for the 4-6 tier. A separate guide is available for the 3-4 tier.

BLANK PAGE

Supporting teacher assessment

The optional key stage 3 mathematics tests aim to be supportive of school assessment arrangements and can be used as part of an integrated approach to teacher assessment. Assessing Pupils' Progress (APP) material may be used alongside these tests. APP is a structured approach to periodic assessment, enabling teachers to:

- use information about pupils' strengths and weaknesses to improve teaching, learning and rates of pupils' progress;
- track pupils’ progress over a key stage or longer.

The optional test materials may be used in a variety of contexts in order to give pupils the broadest opportunities to show what they can do. Individual questions and pupil responses can be used to stimulate class discussions and group activities, contributing to a rich evidence-base for teacher assessment. The notes on individual questions make some specific suggestions for teaching and learning (see Section B).

Section A: Formal administration

Administering the tests

The guidance in this section must be followed in order to produce a national curriculum level for each pupil using the level thresholds supplied (page 50).

This information is provided for anyone who is involved in administering the tests, including teachers, other members of the school staff, and other adults who may be assisting in the test administration.

The tests should be carried out under test conditions; they may be held in a school hall, classroom or any other suitable accommodation.

Who are the tests suitable for?

The year 7 optional tests are aimed at pupils working within levels 3 to 6 . The tests are supplied in two tiers, one covering levels 3 to 4 and the other covering levels 4 to 6 . The lower tier is more appropriate for pupils working at levels 3 and 4, while the higher tier is for those working at levels 4,5 and 6 . The guidance below relates to the 4 to 6 tier only.

Test papers - Paper 1 and Paper 2

There are two papers, each of 60 marks. Paper 1 is a non-calculator test and Paper 2 is a calculator-allowed test. Both tests are one hour long.

Each test consists of 29 questions. Where a question part is worth more than one mark, pupils are able to obtain partial credit for their working even if the final answer is incorrect. Pupils write their working and answers in spaces provided within the answer booklets. Questions are of a variety of types. Some are context-free, but others are placed within everyday, classroom or mathematical contexts. Some questions are routine tests of skill, while others assess application or understanding. Pupils may be required to organise a multi-step calculation for themselves. Some questions ask pupils to explain their reasoning.

Summary of the year 7 optional tests

- Paper 1 at levels 4 to 6 , one hour, 60 marks
- Paper 2 at levels 4 to 6 , one hour, 60 marks
- Total marks available $120(60+60)$

Equipment needed for the tests

In addition to pens, pencils, rubbers and rulers, the following equipment will need to be available to pupils when they take the tests:

Paper 1 Tracing paper (optional)
Paper 2 Calculator, pair of compasses, tracing paper (optional)
Pupils must not have access to a calculator during Paper 1.

Timing

Pupils should be given 60 minutes to complete each test. You may indicate to the pupils when they are halfway through the time allowed for the test, and again a few minutes before they have to stop.

Introducing the tests

Teachers are advised to draw pupils' attention to the 'Remember' section on the front cover of the test booklet, and to the instructions and formulas on page 2 .

It is important to brief pupils fully before they begin each paper. Some of the points that you might want to cover are:

- The test is one hour long.
- Check the list of equipment on the front cover of your paper, to make sure you have what you may need.
- If you want to change your answer, put a neat line through the response you don't want. For changes to diagrams use a rubber.
- The test starts with easier questions. Try to answer all the questions in the booklet.
- Write all your answers and working in the test booklet - do not use rough paper. Marks may be awarded for your working even if your answer is wrong.
- Remember to check your work carefully.
- I will tell you when we are halfway through the test and also tell you when we are into the last five minutes. I will tell you when the test is over and you must stop writing.
- If you have any urgent questions during the test you should put up your hand and wait for someone to come to you. You must not talk to each other.

For Paper 2 only:

- You may use a calculator in this test. Make sure you have your calculator and that it is working properly.

Helping pupils during the tests

Teachers should ensure that pupils are clear about what they have to do but should not provide help with the mathematics being tested. Teachers should not help by explaining specific mathematical terms, nor by interpreting graphs or mathematical tables or diagrams. If a pupil asks for clarification of a mathematical symbol or notation then the teacher may read it to the pupil but should not indicate the operation or process to be used.

Access arrangements

These tests have been designed to be accessible to the great majority of pupils working at levels 4-6 in mathematics. Schools are free to make adaptations to the tests that will improve their accessibility for pupils with special educational needs and pupils for whom English is an additional language. In making any changes to the way the tests are administered, the focus should be on the assessment needs of the individual pupil. Any adaptations should be similar to those made to the materials with which pupils work in the classroom.

Examples of appropriate adaptations

School-based adaptations to the tests may include:

- allowance of up to 25 per cent additional time
- use of readers, signers, amanuenses
- provision of tactile shapes and number cards
- separating the tests into sections, taping, photocopying onto coloured paper, use of coloured overlays, use of apparatus
- enhancing the shading on diagrams, including charts and graphs, to increase visual clarity
- enlarging diagrams, cutting them out, embossing or mounting them on card or other material according to normal classroom practice
- translation of words or phrases in the test papers that are likely to prove difficult for pupils for whom English is an additional language, and also if required for pupils who use British sign language (BSL) or other signsupported communication
- use of bilingual dictionaries.

Access arrangements should not provide an unfair advantage. It is important to ensure that any assistance given does not alter the nature of the test questions, and that any answer given is the pupil's own.

Modified large print, enlarged print and Braille test papers for visually impaired pupils are available from the QCDA modified test agency. Additional guidance notes for teachers administering the modified versions of the tests are supplied with the test papers.

If you have any questions about ordering the modified tests, contact the QCDA modified optional test agency on: 08445006727.

For further guidance on access arrangements please refer to Access arrangements, available on the QCDA website at: www.qcda.gov.uk/assessment/3798.aspx

Marking the tests

The structure of the mark scheme

Pages 12-19 of this booklet contain guidelines on how to mark the 4 to 6 tier tests. The guidance in this section must be followed in order to produce a national curriculum level for each pupil using the level thresholds supplied (page 50).

This general guidance should be observed unless specific instructions to the contrary are given, and should be read before marking begins. It could form the basis of departmental INSET to ensure standardisation of marking within, and between, schools.

The marking information for questions within the tests is set out in the form of tables which start on page 20 (Paper 1) and page 36 (Paper 2). The columns to the left of each table provide a quick reference to the question number, question part and the total number of marks available for that question part. There is also an indication of where it may be necessary to refer to the general guidance.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are minimally acceptable or unacceptable. Other guidance, such as when 'follow-through' is allowed, is provided as necessary.

Questions with a Using and applying mathematics element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For some graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided (see centre pages of this booklet).

Recording marks on the test paper

All questions, even those not attempted by the pupil, should be marked, with a 1 or a 0 entered in each marking space. Where two marks can be split into one mark gained and one mark lost, with no explicit order, then this should be recorded by the marker as 1

0
The total marks awarded for a double page can be written in the box at the bottom of the right-hand page, enabling the correct total to be more easily transferred to the front of the test paper.

Finding levels

A total of 120 marks is available (60 from Paper 1 and 60 from Paper 2). The sum of the marks allocated from these two components indicates the level at which the pupil is working.

The level thresholds can be found on page 50 .

General guidance for marking

Abstract

Answers that are numerically or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating specifically to the marking of questions that involve money, negative numbers, algebra, time, coordinates, probability, or tick-box and explanation. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

Procedural queries

What if ...
The pupil's response
does not match closely
any of the examples
given.
The pupil has
responded in a non-
standard way.

The pupil's accuracy is marginal according to the overlay provided.

The pupil's answer correctly follows through from earlier incorrect work.

There appears to be a misreading affecting the work.

The correct answer is in the wrong place.

Marking procedure
Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the Correct response column. Refer also to the Additional guidance column.

Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.

In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a 'slip' such as writing $4 \times 6=18$ in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen no method marks may be awarded. Examples of conceptual errors are: misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating 35×27; subtracting the smaller digit from the larger in calculations such as $45-26$ to give the answer 21; incorrect signs when working with negative numbers.

Overlays can never be 100% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.

Follow-through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow-through response should be marked as correct.

This is when the pupil misreads the information given in the question and uses different information. If the original intention or difficulty level of the question is not reduced, deduct only one mark. If the original intention is changed or the difficulty level is reduced then do not award any marks for the question part.

Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

What if ...

The final answer is wrong but the correct answer is shown in the working.

The pupil's answer is correct but the wrong working is seen.

The correct response has been crossed or rubbed out and not replaced.

More than one answer is given.

The answer is correct, but in a later part of the question the pupil has contradicted their response.

The pupil has drawn lines which do not meet at the correct point.

Marking procedure

Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether:

the incorrect answer is due to a transcription error	If so, award the mark.
in a question not testing accuracy, the correct answer has been given but then rounded or truncated	If so, award the mark.
the pupil has continued to give redundant extra working which does not contradict work already done	If so, award the mark.
the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.

A correct response should always be marked as correct unless the mark scheme states otherwise.

Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.

If all the answers given are correct, or if a correct range is given, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.

A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.

Markers will interpret the phrase 'slight inaccuracies in drawing' to mean 'within or on a circle of radius 2 mm with centre at the correct point'.

within the circle accepted

on the circle accepted

outside the circle not accepted

Marking specific types of question

Responses involving money
For example: $£ 3.20$ £7

Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, £3-20, £ 320 pence, $£ 3: 20$, £ 7.00 The unit, $£$ or p, is usually printed in the answer space. Where the pupil writes an answer outside the answer space with no units, accept responses that are unambiguous when considered alongside the given units eg with f given in the answer space, accept 3.20 7 or 7.00 Given units amended eg with $£$ crossed out in the answer space, accept 320p 700p	\boldsymbol{x} Incorrect or ambiguous indication of the amount eg $£ 320, f 320$ p or $£ 700$ p x Ambiguous use of units outside the answer space eg with f given in the answer space, do not accept 3.20 p outside the answer space x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0

Responses involving negative numbers
For example: -2

Accept \checkmark	Do not accept \boldsymbol{x}
To avoid penalising the error below more than once within each question, do not award the mark for the first occurrence of the error within each question. Where a question part carries more than one mark, only the final mark should be withheld. \timesIncorrect notation eg 2-	

Responses involving time	
Accept \checkmark	Take care ! Do not accept x
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, $2.30 \mathrm{~min}$! The unit, hours and/or minutes, is usually printed in the answer space. Where the pupil writes an answer outside the answer space, or crosses out the given unit, accept answers with correct units, unless the question has specifically asked for other units to be used.
A specific time For example: 8:40am	17:20
Accept \checkmark	Do not accept x
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $\quad 8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg $840,8: 4: 0,084,84$

Responses involving coordinates

For example: (5,7)

Accept \checkmark	Do not accept \times
\checkmark Unconventional notation $\text { eg } \begin{array}{rl} & (05,07) \\ & \text { (five, seven }) \\ x & y \\ & (5,7) \\ & (x=5, y=7) \end{array}$	\boldsymbol{x} Incorrect or ambiguous notation eg $(7,5)$ $\left(\begin{array}{ll} y & x \\ 7,5 \end{array}\right)$ $(5 x, 7 y)$ $\left(5^{x}, 7^{y}\right)$ $(x-5, y-7)$

Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only
For example: $0.7 \quad \frac{7}{10} \quad 70 \%$

Responses involving tick-box and explanation For example:Yes Explain your answer Accept \checkmark Where an incorrect box is ticked and the explanation is correct: Where the tick-box options are Yes/No only, accept a correct explanation that is better than minimally acceptable. A minimally acceptable response with the incorrect box ticked. \timesA correct explanation with 'Cannot tell' ticked incorrectly (unless the pupil's intention to tick the correct box is clear from the explanation).	

Mark scheme for Paper 1

Question	Area shading		
1		Correct response	Additional guidance
a	1 m	8	
b	1 m	32	\checkmark Follow-through as $4 \times$ their (a)

Question			Pasta	
2		Correct response	Additional guidance	
a	1m	3	\checkmark Ignore correct units ie 3 packets \times Incorrect units eg . 3 grams	
b	2m or 1m	Gives all four correct values, ie 900 600 75 $\frac{3}{4}$ Gives three correct values	$\checkmark 0.75$	

Question	Chains		
3		Correct response	Additional guidance
a	1m	Gives both correct values in the correct positions, ie 11 26	
b	1 m	Gives two correct values eg - 3 and 1 - 4 and 3 - 5 and 5 - 6 and 7 - 10 and 15 - 2 and -1 - 2.5 and 0	\times Incorrect statement eg - Multiply by 5 , then subtract -5
	1 m	Gives the correct value which follows their rule eg - their correct rule: Multiply by 3 , then subtract 1 $2 \rightarrow 5 \rightarrow 14$ - their correct rule: Multiply by 4 , then subtract 3 $2 \rightarrow 5 \rightarrow 17$	\checkmark Follow-through from their incorrect rule eg - their incorrect rule: Multiply by 4 , then subtract 1 correct follow-through $2 \rightarrow 5 \rightarrow 19$ - their incorrect rule: Multiply by 10, then subtract 7 correct follow-through $2 \rightarrow 5 \longrightarrow 43$

Question	目 See General guidance for marking - Tick-box and explanation Groups		
4		Correct response	Additional guidance
a	1 m	13 and 5	
b	1m	Indicates No and gives a correct explanation eg - 13 is higher than 6 - 13 brought 4 to 6 - Most brought 4-6 - Because 4 to 6 has more cans - Because only $\frac{1}{4}$ brought $1-3$ but $\frac{3}{4}$ brought a different amount	\checkmark Minimally acceptable response eg - No, because on the grid it says 4 to 6
c	1m	Indicates Yes and gives a correct explanation eg - 18 is lower than 20 - the group with 4 brought 2 more cans than the group with 9	\checkmark Minimally acceptable response eg - Yes, 18/20 - Yes, 2 less \times Incorrect explanation eg - Yes, 5 is more than 2 \times Incomplete explanation eg - Yes, there are 5 pupils who brought 4 cans and there are 2 pupils who brought 9 cans. - Yes, the group who brought 4 cans were more than the group who brought 9 cans.

Question	Numbers 5		

Question			Fruit
6		Correct response	Additional guidance
	2 m or 1 m (U2)	Shows that Mia could buy one of each fruit, or she could buy one, two or three apples and no bananas ie Apples Bananas Gives three correct pairs of values	\checkmark Correct pairs of values in any order eg - Apples Bananas

Question					Hidden
7		Correct response	Additional guidance		
	1 m	Indicates the correct shape, ie			
		\square	\square		
		$\boxed{\square} \square \square$			

Question			Animal
8		Correct response	Additional guidance
a	1m	13 hours 30 minutes	
b	1 m	sheep	\times Time given instead of the animal eg $\text { - } 3.8 \text { hours }$
c	1m (U1)	Gives both correct animals (or times) in either order eg - dog and seal - 6.2 and 10.6	

Question	目 See General guidance for marking - Tick-box and explanation Olympics		
10		Correct response	Additional guidance
a	1 m	97	
b	1m	Indicates the correct number of rounds, ie in none of them in 1 of them in 2 of them in 3 of them in all of them	
c	1m	Indicates No and explains that London got too few votes (39) in the third round to make up the number of votes (54) it got in the fourth round eg - 54 is more than 39 - Only 39 voted in third round - If Alex was correct London would have had 54 (or more) votes in the third round - 15 more people voted for London - $54-39=14$ (error) The other 14 voted another country - There were not as many votes in the third round as the fourth round - In all of the rounds London kept getting more votes	\checkmark Minimally acceptable explanation eg - No, 3rd 39 people, 4th 54 people \times Incomplete explanation eg - No, third round 39 people - No, there was a different number than 54 - No, because there would be more votes \times Incorrect or irrelevant explanation eg - Only 103 people voted in the third vote, and 104 people voted in the fourth vote - All rounds had different number of votes. If they are allowed to vote again, it will all be the same amount each time \checkmark Additional information, whether correct or incorrect, so long as it does not contradict the correct explanation eg - Because in both rounds there were 104 people voting but in the 3rd round London only got 39 votes but in the 4th they got 54.31 people changed their minds. 17 voted Paris and 15 voted London \times Several explanations given including incorrect ones eg - 39 is less than 54 and if you add 39 , 33, 31 together it equals more, not the same - so Alex is wrong - In the third round only 39 people voted for London and one person less voted in round 3 to round 4

Question			Signs
11		Correct response	Additional guidance
	1m	Gives two correct sets of signs from the list below $\begin{aligned} & +++ \\ & \times-x \\ & \times-\div \\ & +\times \times \\ & +\times \div \end{aligned}$	\checkmark Brackets in a correct solution eg $4 \times(3 \div 2+1)=10$ \checkmark Unambiguous indication of the correct signs shown in calculation elsewhere on the page eg $\begin{aligned} & 4 \times 3=12 \\ & 2 \div 1=2 \\ & 12-2=10 \end{aligned}$

Question	FOrest		
12		Correct response	Additional guidance a 1 m
Canada	Value given instead of the name of the eg		
b	1 m	Finland	
c	1 m	50	(part a) 2446

Question	Marking overlay available		Rotate triangle
13		Correct response	Additional guidance
	$2 \mathrm{~m}$ or 1m	Draws the triangle correctly rotated with vertices within the tolerances as shown on the overlay Draws a triangle with two vertices positioned correctly, within the tolerances as shown on the overlay eg - - or Draws a correct triangle correctly orientated but in an incorrect position. (Markers can slide the overlay horizontally and/or vertically, but must not turn it over or rotate it) eg - or Rotates the triangle 90° clockwise around the point R ie	\checkmark Lines not ruled or accurate Accept provided the pupil's intention is clear \times Additional triangles eg

Question			Cards
14		Correct response	Additional guidance
a	1m	Gives one pair of fractions from the list below, in either order $\begin{aligned} & \frac{1}{2}=\frac{3}{6} \\ & \frac{1}{3}=\frac{2}{6} \\ & \frac{2}{1}=\frac{6}{3} \\ & \frac{3}{1}=\frac{6}{2} \end{aligned}$	\times Numbers used are not numbers given \times Numbers repeated within a question part
b	1m	Gives a different correct pair of fractions to those given in part (a)	\times For part (b), the same pair of fractions given as in part (a) but in reverse order eg - part (a) $\frac{3}{6}=\frac{1}{2},(\operatorname{mark} 1)$ part (b) $\frac{1}{2}=\frac{3}{6},(\operatorname{mark} 0)$

Question			Rectangle
15		Correct response	Additional guidance
	1m (U1) 1m	Draws two straight lines that divide the rectangle into two triangles and one quadrilateral eg - - - - Draws two straight lines that divide the rectangle into three triangles eg - - -	\checkmark Accept inaccuracies in drawing provided the pupil's intention is clear

Question			Hundred square
16		Correct response	Additional guidance
	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	Matches all five descriptions correctly, ie Matches at least three descriptions correctly	\times Description matched to more than one hundred square For 2 m or 1 m , do not accept as a correct match

Question			a and b
17		Correct response	Additional guidance
a	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	Gives four pairs of values with a product of 24 eg - 1 and 24 2 and 12 3 and 8 4 and 6 Gives three correct pairs of values	\checkmark Values for a and b swapped eg - -1 and -24 -24 and -1 1 and 24 24 and 1 \checkmark Decimals and fractions eg - $\frac{1}{2}$, and 48 . 1.5 and 16
b	1m	Gives 4 and 6 in either order	

Question			Charts
18		Correct response	Additional guidance
	$2 \mathrm{~m}$ or 1m	Matches all four pie charts correctly, ie Matches at least two pie charts correctly	\times Pie chart matched to more than one bar chart For 2 m or 1 m , do not accept as a correct match

Question					Shop
19		Correct response	Additional guidance		
a	1m	11am	$\checkmark 11$		
b	1m	5	! Follow-through Accept follow-through as		
			their answer in part (a)	accept in part (b)	
			10(am)	7	
			12(pm)	6	
	U1		1(pm)	12	

\begin{tabular}{|c|c|c|c|}
\hline Question \& \& \& Similar

\hline 20 \& \& Correct response \& Additional guidance

\hline \& 1 m

1 m \& | Gives three edge lengths other than those shown, in the ratio 5:9:10, in any order eg |
| :--- |
| - 10, 18, 20 |
| - $100,90,50$ |
| Gives $63,87,30$ in any order | \& \checkmark Accept the use of a fractional scale factor eg

$$
2 \frac{1}{2}, 4 \frac{1}{2}, 5
$$

\hline
\end{tabular}

Question			Volumes
21		Correct response	Additional guidance
a	1m	4	
b	1m	8	```! Follow-through Accept follow-through as 2 x their (a), provided their (a) was a whole number greater than 4 eg - part (a) 32, (mark 0) part (b) 64, (mark 1)```

Question			Counters
24		Correct response	Additional guidance
	1 m	$\begin{aligned} & \frac{1}{3} \\ & \text { or } \\ & 0.3(333 \ldots) \end{aligned}$	```\checkmark ~ E q u i v a l e n t ~ f r a c t i o n s * A ratio eg . 1:2```

Question	Angle chase		
27		Correct response	Additional guidance
	1 m	50	\checkmark Ignore units eg $\cdot 50^{\circ}$

Question			Fractions
29		Correct response	Additional guidance
a	1m	75	
b	1m	0.375	```\checkmark ~ \checkmark ~ F o l l o w - t h r o u g h ~ a s ~ t h e i r ~ (a) \times 0 . 0 0 5 eg - part (a) 88, (mark 0) part (b) 0.44,(mark 1) x Rounding eg .0.38```

BLANK PAGE

Mark scheme for Paper 2

Question	Cuboid net					
1		Correct response				Additional guidance
	1 m	Indicates the correct shape, ie				

Question	Robot		
3		Correct response	Additional guidance
a	1 m	Gives both correct entries, ie $\times 4$ $\times 2$	\times Multiplication signs omitted
b	1 m	24	$\times 24 r 1$

Question	目 See General guidance for marking - Tick-box and explanation Rollercoaster		
4		Correct response	Additional guidance
a	1 m	Indicates both correct rollercoasters, ie	
b	1m	Indicates No and identifies the Big One as being 1675 or as being longer than 1455 eg - Second longest is 1675 - Must be more than 1675 - Big One is longer than 1455 - The Big One is even bigger - Second longest is longer	\checkmark Reference to 1675 as being the longest Condone provided false statements are not made eg accept - No, the longest rollercoaster is 1675 - No, it is 1675 - No, 1675 \times False statements eg - The UK's longest rollercoaster is 1675 - The biggest rollercoaster in the world is the Big One and on the table it shows that it is 1675 m in length - Second highest is 1675 \times Explanation based on 1455 not being in the table eg - 1455 is not the longest because in the chart it says $1675,373,891,640,834$

Question			Restaurant
7		Correct response	Additional guidance
a	1m	(\pm) 90 or $(\pm) 270$	\checkmark Values that are the result of $90+360 n$ or $270+360 n$ eg . 450 . 630 - 810 - 990 - -450
b	1m	Gives a correct value that is different to their response in part (a)	

Question			Rounding
8		Correct response	Additional guidance
	$2 \mathrm{~m}$ or 1m	Indicates all four correct values, ie $14.4514 .5414 .5515 .4415 .4515 .54$ Indicates three correct values and no incorrect values or Indicates all four correct values and one incorrect value	

Question			Same
9		Correct response	Additional guidance
	$2 \mathrm{~m}$ or 1m	Matches all four values correctly, ie Matches at least two values correctly	\times Value on the left-hand side matched to more than one value on the right-hand side For 2 m or 1 m , do not accept as a correct match

Question			Between
10		Correct response	Additional guidance
	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	Gives three correct values In the first line, gives a value between 7 and 8.5 exclusive eg - 8 - 7.1 In the second line, gives a value between 7 and 7.5 exclusive eg - $7 \frac{1}{3}$ - 7.1 In the third line, gives a value between 7 and 7.05 exclusive eg . 7.01 - 7.049 Gives two correct values	

Question	UK films		
12		Correct response	Additional guidance
a	1m	1957	
b	1 m	42	\times Incomplete response eg $\cdot 150-108$
c	1 m	Labels the number of films correctly ie 1200 1000 800 600 400 200 0 Labels the years correctly eg 1950-1959 1990-1999	\checkmark Unambiguous indication of the correct years eg - fifties; nineties - 50 to 59; 90 to 99 -1950, 1959; 1990, 1999 \times Ambiguous or incorrect indication of the years eg $\begin{aligned} & .1950 ; 1990 \\ & .1950-1959 ; 1990-199 X \end{aligned}$

			Number shapes
$\mathbf{1 3}$		Correct response	Additional guidance
a	1 m	177	
b	1 m	Gives both totals correct:	
		45	
	U1		

Question	Apricots			
14		Correct response	Additional guidance	
	1 m	675		

Question			T \& Z
15		Correct response	Additional guidance
a	1m	Draws the lines in the correct positions, ie	
b	1 m	Indicates the correct shape, ie	

Question	都 See General guidance for marking - Money		Garden
16		Correct response	Additional guidance
	$3 m$ or 2m or 1m (U1)	$£ 19.50$ Shows the digits 195 or Shows the digits 115 (ie charge for hedge) eg . 11.50 or Shows evidence of working out the charge for grass as being $£ 8.00$ eg - $£ 8$ - $5 \times 8=40$ $40 \times 20=800$ Finds the length of the hedge as 23 or Finds the area of the grass as 40	$\times 8$ shown with no indication that this is the cost for cutting the grass eg do not accept $\text { - } 8 \times £ 0.50=£ 4.00$! Condone Incorrect units or no units given

Question	Strawberries		
18		Correct response	Additional guidance
	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	$700 \mathrm{~g} \text { or } 0.7(0 \ldots) \mathrm{kg}$ Shows digit 7 with incorrect or no units eg . 700 - 70 . 0.07 g	\checkmark Other correct notation of correct units eg - 700 grams - 0.7 kilograms

Question			
19		Correct response	IsOmetric
a	1 m	Gives 4 and 7 in either order	
b	1 m	Indicates the correct shape, ie	

Question	䍙 See General guidance for marking - Money		Trip
20		Correct response	Additional guidance
a	1 m	56	\times A decimal or fraction
b	1 m	765	
c	1 m	29	\times A decimal or fraction

Question	Quadrilaterals		
23		Correct response	Additional guidance
a	1m	Gives a property that is true for every rectangle and every kite eg - Two pairs of equal sides - 2 of the sides are the same and the other 2 are the same - Straight lines/ sides/ edges - 4 vertices/ corners/ angles - All the degrees add up to 360 - Symmetrical - Have lines of symmetry/ a line of symmetry/ at least one line of symmetry - 2D	\times Property that is not true for squares eg - Two sides are longer than the other two sides \times Incorrect property eg - One line of symmetry (implies exactly one) - A pair of parallel lines - Opposite sides are the same length - Four points \times Incomplete description eg - 2 of the sides are the same length \times Repetition of the property given in the question stem eg - They are both quadrilaterals - Four sides \times Responses relating to $3 D$ shapes, indicated through explanations or diagrams
b	1m	Gives a property that is true for every rectangle and that is not true for any non-rhombic and nonsquare kite eg - All angles are the same - All angles 90 degrees - It has at least 3 right angles - Opposite sides are the same length - 2 pairs of parallel lines - Parallel sides	\checkmark Property that is true only for rectangles which are not squares Condone eg - Two lines of symmetry - The shortest sides are opposite \times Incorrect property eg - Straight lines, no diagonals - It has right angles - Two sides are parallel

Question 24	Calculator			
			Correct response	Additional guidance
	1m (U1)	238		\times A non-whole number eg . 237.999 ...

Question			Daylight
25		Correct response	Additional guidance
a	1m	Gives all six correct months in any order ie Jan, Feb, Mar, Oct, Nov, Dec	```\checkmark ~ U n a m b i g u o u s ~ i n d i c a t i o n ~ o f ~ t h e ~ c o r r e c t months eg - Jan-Mar, Oct-Dec```
b	1m	Indicates the correct chart, ie	

Question	Marking overlay available		Pentagon
26		Correct response	Additional guidance
	2m or 1m (U2)	Constructs a completed pentagon, sides ruled, with the fifth vertex within the region as shown on the overlay, with construction arcs shown Draws a completed pentagon, sides ruled, with the fifth vertex within the region as shown on the overlay, but no construction arc(s) shown or Draws a completed pentagon, sides ruled, construction $\operatorname{arc}(\mathrm{s})$ shown, with the two new sides drawn of an equal but incorrect length	! Use of overlay Markers should use their judgement to determine whether the construction arcs are genuine, but may use the dashed lines on the overlay as a guide ! Condone - A single correct construction arc - Equivalent indication of an arc (eg dots)

Question	Marking overlay available		Conversion graph
27		Correct response	Additional guidance
a	1m	Draws a line completely within the tolerance as shown on the overlay	\times Points identified inside the tolerance but line not drawn $!$ The line must begin at $(0,0)$ and extend beyond (30, 10)
b	1m	$\mathrm{p}=\frac{d}{3}$ or $\mathrm{p}=\frac{1}{3} d$	\checkmark Alternative notation eg $\begin{aligned} & \cdot \mathrm{p}=d \div 3 \\ & \cdot \mathrm{p}=d \times \frac{1}{3} \end{aligned}$

Question	Sign 28 or 1 m		

Question				Hits
29		Correct response	Additional guidance	
	2 m	Indicates all three correct years, ie		
a		200020012002203		
b		$20002001 \quad 2002 \quad 2003$		
c		2000200120022003		
	1 m	Indicates two correct years		

Section B: Using the outcomes of the tests

The following sections provide information about interpreting the outcomes of the year 7 optional mathematics tests in tiers 4 to 6 . They explain how teachers can use the test scores to find out more about pupils' attainment in the national curriculum. They also present a number of key findings and useful information obtained during the development of the tests that may be used in support of teacher judgements.

Level thresholds

In order to make use of the information in this section, you should administer the tests according to the guidance in Section A: Formal administration. It is particularly important that you observe the time limits given, follow the test instructions, and mark the questions according to the mark scheme. If you have used the tests in a different context to provide qualitative information about pupils' strengths and weaknesses then the information derived from this section will not be applicable and you should refer to the Key findings and useful information section on page 52 .

In a formal administration pupils need to take both test booklets in order for the total marks to be translated into a valid national curriculum level for mathematics overall.

The following tables give an indication of the national curriculum levels for pupils attaining each of the mark ranges in the tests.

Level	Mark range
Below 4	$0-20$
4	$21-45$
$4 C$	$21-28$
$4 B$	$29-36$
$4 A$	$37-45$
5	$46-72$
$5 C$	$46-54$
$5 B$	$55-63$
$5 A$	$64-72$
6	$73-120$
$6 C$	$73-89$
$6 B$	$90-105$
$6 A$	$106-120$

Variability of results

Any scores derived from a test are subject to some variation according to the precise circumstances under which the test had been sat and marked. This does not mean that pupils get 'incorrect' test results, but it does mean that some caution should be exercised in translating scores which are very close to the threshold mark into an overall mathematics level for the pupil. The level thresholds provided are indicative and teachers should be aware that differences in the status, administration and marking procedures open the tests to a potentially broader range of variation than the former statutory national curriculum tests.

Key findings and useful information

This section provides further support to teachers in making level-related judgements based on the outcomes of these tests.

Year 7 Paper 1

Question number (L4-6)	$\mathbf{4}$			
Question name	Groups			
Marks	$\mathbf{3}$			
Programme of Study	Handling data			
The question	This question presents pupils with a table of data and asks them (a) to summarise it and then (b) and (c) to use the data to evaluate comments made about it. Pupils who answer item (a) correctly demonstrate an ability to read and summarise data from a table.			
Related teaching points	Those who answer item (b) correctly are able to compare a statement about data with the data itself, identify why the statement is incorrect and explain their reasoning.			
Those answering (c) correctly show that they can take this skill further by manipulating data within a table in order to justify their explanation.				
Pupils answering all items correctly are ready to develop these skills further. They can be encouraged to interpret, evaluate and explain using more complex datasets.				
Those who answered item (a) incorrectly might need to practise reading data from straightforward tables, perhaps through gathering and presenting data that is meaningful to them. They might also be asked to work in small groups to devise and summarise simple datasets, or to identify errors in pre- prepared tables when compared with the source data.				
Those who answered items (b) or (c) incorrectly might need more practice		$	$	in evaluating conclusions drawn from straightforward datasets. Concept
:---				
cartoons could be used for this purpose (eg examples of four different				
conclusions that might be drawn from a dataset; pupils work together				
to agree the relative merits of each conclusion). Once familiar with this				
approach, pupils might devise their own concept cartoons for their peers to				
evaluate.				

Year 7 Paper 1

Question number (L4-6)	$\mathbf{1 9}$
Question name	Shop
Marks	$\mathbf{2}$
Programme of Study	Handling data
The question	This question presents two charts based on the same dataset. Emma's chart shows all data but has no labels on the y axis, while Tami's chart has incomplete data and no labels on the x axis. Pupils are asked to use both charts to (a) give the time of the first data point on Tami's chart and (b) say how many people were in the shop at 1pm. Those who answer (a) correctly show that they can relate data presented in two different forms and use it to draw a relatively straightforward conclusion. Those who answer (b) correctly indicate that they understand how to relate the scales on different charts. They are likely to have used one of two strategies. Some might have simply read across the two charts. Others might have used their answer to part (a) to help them work out the answer to part (b). For both parts of this question, pupils have to make decisions about
mathematical strategy.	
melated teaching points	The question asks pupils to give answers but not to explain how they were derived. Pupils could be asked to make their strategies explicit, thus prompting reflection on alternative strategies.
Pupils could be given different representations of various datasets and asked	
to compare them. This could be used to encourage reflection not only on	
how to interpret data, but also on potential dangers in trying to interpret	
data that is not clearly presented, thus making explicit the need for clarity in	
presentation.	

Year 7 Paper 2

Question number (L4-6)	$\mathbf{1 3}$
Question name	Number shapes
Marks	$\mathbf{2}$
Programme of Study	Number and algebra
The question	Pupils are shown a number square numbered from 1 to 100 and told that Ben places a shape on the square and sums the numbers that fall inside the shape. They are then asked (a) what the total will be if he moves the shape one place to the left and (b) to calculate the least total he can make without going outside the grid, firstly if he does not rotate the shape and secondly if he does rotate the shape. Pupils answering this question correctly need to use their knowledge of number and calculation (or calculator skills), but also basic skills relating to spatial awareness.
Related teaching points	Potential errors in answering this question might arise from incorrectly translating the shape or from calculation errors. Pupils who make translation errors might benefit from further exploration of moving shapes around a grid, and using the language associated with such movement (eg left/right, clockwise/anticlockwise, rotate, etc). Pupils who make calculation errors might need more practice in using a calculator effectively (if they used one when answering this item). Alternatively, they might benefit from further practice in adding two-digit numbers based on recall and on using mental strategies associated with number squares. Some might also benefit from exploration of estimation strategies for checking answers.

Year 7 Paper 2
$\left.\begin{array}{|l|l|}\hline \text { Question number (L4-6) } & \mathbf{2 0} \\ \hline \text { Question name } & \text { Trip } \\ \hline \text { Marks } & \mathbf{3} \\ \hline \text { Programme of Study } & \begin{array}{l}\text { Number and algebra } \\ \hline \text { The question } \\ \text { greeting cards. Pupils are told the cost of the trip per person, the amount } \\ \text { of money raised from each card sold and the number of cards sold in total } \\ \text { each day for a week. They are then asked (a) how many cards must be sold } \\ \text { by each person to raise the individual amount needed, and (b) how much } \\ \text { money was raised in total during the week, by selling cards. Item (c) tells } \\ \text { pupils that more money was raised and gives the final amount. Pupils then } \\ \text { have to calculate how many people can afford to go camping. } \\ \text { Pupils who answer these items correctly are able to select the relevant } \\ \text { information from the question, make appropriate decisions about the } \\ \text { calculations required, and make the relevant calculations accurately. }\end{array} \\ \hline \text { Related teaching points } & \begin{array}{l}\text { A common error in part (b) is to make only a partial calculation (eg } \\ \text { totalling the number of cards sold rather than the money raised by selling } \\ \text { those cards). Pupils who make such errors might need further support } \\ \text { in reviewing and evaluating their work, ensuring that they have actually } \\ \text { reached an appropriate endpoint. More experience of multi-step problems } \\ \text { might be useful. For example, pupils might be asked to devise explicit } \\ \text { instructions for younger pupils on how to approach and solve a similar } \\ \text { problem. These could then be trialled with fellow pupils, raising pupils' } \\ \text { awareness of the steps involved, enabling them to refine their instructions } \\ \text { and raising their awareness of how to process multi-step problems. } \\ \text { A common error for item (c) is to give an answer that includes a decimal }\end{array} \\ \hline \text { or fraction. This indicates that, while pupils have the necessary calculation } \\ \text { skills, they have failed to account for the context of the question. Pupils } \\ \text { may benefit from exploring contexts where whole numbers or fractions are } \\ \text { appropriate. This might include classifying examples according to whether a } \\ \text { fraction or whole number is necessary, optional or meaningless. }\end{array}\right\}$

Year 7 Paper 2
\(\left.$$
\begin{array}{|l|l|}\hline \text { Question number (L4-6) } & \mathbf{2 6} \\
\hline \text { Question name } & \text { Pentagon } \\
\hline \text { Marks } & \mathbf{2} \\
\hline \text { Programme of Study } & \text { Geometry and measures } \\
\hline \text { The question } & \begin{array}{l}\text { This question asks pupils to complete a drawing of an irregular equilateral } \\
\text { pentagon. Three edges are given and pupils must add the remaining two } \\
\text { edges. They are told to use a straight edge and a pair of compasses and to } \\
\text { leave in their construction lines. }\end{array} \\
\hline \text { Related teaching points } & \begin{array}{l}\text { A common error is for pupils to fail to understand that the term 'pentagon' } \\
\text { can apply to an irregular polygon as well as to the more easily recognised } \\
\text { regular pentagon. Pupils who make this mistake may not attempt the } \\
\text { question or might try to 'regularise' the shape (eg by making it symmetrical). } \\
\text { Such pupils could benefit from activities that involve comparing and } \\
\text { classifying shapes according to the number of sides, including regular and } \\
\text { irregular shapes. } \\
\text { Some pupils might use completion strategies other than those suggested. } \\
\text { For example, they might use a ruler to make a series of measurements }\end{array}
$$

approximating the construction arc, rather than using a pair of compasses.

In this context, such answers would receive credit where the resulting

construction arc was sufficiently clear. However, pupils who use this

strategy might need to explore how to work more efficiently using a pair of

compasses.

Pupils receiving partial credit for this item (ie those completing the

shape accurately but with no construction arcs shown, or those giving

construction arcs but adding two lines of an equal but incorrect length)

might benefit from further activities requiring attention to detail when\end{array}\right\}\)| producing geometric diagrams. |
| :--- |

