

Question	Answer	Marks	Notes and guidance
I	Draws correct graphs as shown y = x $y = 3$ $y = 3$	1	Award I mark for $y = x$ correct. Condone no label and slight inaccuracy if the intention is clear. Award I mark for $y = 3$ correct. Condone no label and slight inaccuracy if the intention is clear.
	(3, 3)	Ι	Follow through their point of intersection provided at least one graph is of the correct form.

Year 9 Autumn Core Mark Scheme A

	Indicates $9 + 2a = 23$	I	Accept any clear indication – circle, underlined etc.
2	<i>t</i> = 3	3	Award 2 marks for fully correct method with one arithmetical error Award 1 mark for correct first step e.g. 5t - 12 = 3 or $7t - 15 = 2t$
	w > 1	2	Award I mark for evidence of correct method e.g. multiplying out brackets and rearranging, or dividing both sides by 3, or $w = 1$
	Draws a rectangle I cm by 2 cm e.g.	I	Allow anywhere on the grid.
3	Draws correct plan view e.g.	I	Allow anywhere on the grid.

4	Draws accurate perpendic construction lines clearly v	Draws accurate perpendicular bisector of AB with construction lines clearly visible		2	Award I mark for any correct method if incomplete, or within 2 mm.
5	5 = 3x + 23			3	Award I mark for each correct expansion, 3 rd mark for complete simplification.
	$x^{2} + 3x + 4x + 12$ $x^{2} + 7x + 12$				Award I mark for any three terms correct.
	Completes table correctly		1		Award I mark for two correct.
	Equation	Graph	2	2	
	y = 3x + 2	А			
6	y = 3x - 2	С			
	y = -3x + 2	В			
	y = -3x - 2	D			
7	Indicates true with fully correct working e.g. $105 \div 15 = 7$ Both rectangles are 15 cm by 7 cm so they are congruent		2	Award I mark for attempt to find unknown length in either rectangle.	

Year 9 Autumn Core Mark Scheme A

8	$a = \frac{c+b}{2}$	2	Accept any equivalent form e.g. $a = \frac{c}{2} + \frac{b}{2}$ Award I mark for correct first step e.g. $2a = b + c$ or $a - \frac{b}{2} = \frac{c}{2}$
9	(0, 1)	I	
	3	1	Do not accept e.g. $\frac{6}{2}$
10	Fully correct net with correct dimensions e.g. 3 cm 3 cm 3 cm 3 cm 6 cm 3 cm 2 cm 3 cm 3 cm 6 cm 3 cm 3 cm 3 cm 3 cm 3 cm 4 cm 4 cm 4 cm 5 cm	3	 Award 2 marks for correct shape and at least all rectangles correct or correct shape and triangles correct. Award I mark for correct shape or at least one correct face.

	Draws any correct net for a cylinder e.g.		
11		I	
	33 929 or 10 800π	2	Allow rounding to 3sf or better. Award 2 marks for fully correct method.
		3	Award I mark for at least one correct area e.g. $\pi \times 40^2$ or $\pi \times 80 \times 95$ seen or implied.
	120		Award 1 mark for correct process to find volume e.g. $144 \times 25 \times 250$
12		4	Award I mark for converting either volume of pool to litres or volume of bucket to litres
			Award I mark for (their volume of the pool) divided by (their volume of I bucket).

Year 9 Autumn Core Mark Scheme A

	e.g. the locus of the points from the endpoints should be semicircles	I	Any reasonable explanation.
13	2 cm 2 cm A 2 cm B 2 cm	2	Award two marks for correct locus 2 cm away from AB. Award 1 mark for correct shape.

Question	Answer	Marks	Notes and guidance
I	Indicates $\sqrt{144}$	I	Accept any clear indication – circle, underline, tick etc.
2	<i>p</i> = 225	I	
Ζ	<i>q</i> = 4.2	2	Award I mark for correct first step to solve e.g. $63 = 15q$, $2.8 = q - 1.4$
2	115°	I	
5	Alternate angles are equal	l	
4	1 cm↓ plan side	2	Award I mark for each correct drawing If neither correct, award I mark for two correct drawings from plan, side elevation and front elevation seen in the wrong grids
5	8	2	Award I mark for correct method e.g. attempting to list factors or draw factor tree for both numbers
	192	2	Award I mark for listing multiples of both 24 and 64 or attempt to use prime factors

Year 9 Spring Core Paper Mark Scheme

8	$a^2 + 2a - 35$	2	Award I mark for expansion with 3 out of 4 terms a^2 , $-5a$, $7a$, -35 correct
9	32.6	3	Award I mark for forming equation $8m + 5 + 2m - 3 = 180$ Award 2^{nd} mark for $m = 17.8$ seen or implied
10	A x B x	3	Award I mark for arc with radius 5 cm \pm 2 mm from A Award I mark for arc with radius 3 cm \pm 2 mm from B Award I mark their overlap region shaded
11	e.g. "Carpet Co. because £82.64 is less than £87.91"	3	Award I mark for either £82.64 or £87.91seen Award 2 nd mark for both £82.64 or £87.91seen Award 3 rd mark for correct conclusion and justification No marks for just Carpet Co.
12	504π mm³ or 1583.36 mm³	3	Award I mark for $\pi \times 6^2 \times 14$ Award 2 nd mark for 504 π or 1583.26 seen or implied e.g. by 1580 Award I mark for mm ³
13	a = 2.525	2	Award I mark for correctly substituting $x =$ 2.8 into equation of the lineCondone rounding if evidence of substitutionseen

Year 9 Spring Core Paper Mark Scheme

14	£900	3	Award I mark for 65% = £585 seen or implied (e.g. a bar model) Award 2 nd mark for correct method to find 100%
15	306 m	3	Award I mark for correct use of Pythagoras' theorem e.g. $145^2 - 17^2$ seen Award 2 nd mark for AB = 144

Question	Answer	Marks	Notes and guidance
I	D	I	
2	31 or 37	I	Condone both answers given
Ζ	304	I	
2	8.3×10^{8}	I	
5	0.000057	I	
4	120	I	
5	Draws a circle of radius 4 cm and shades the inside of the circle.	I	Allow circle of radius 3.9 cm to 4.1 cm Accept circle shaded or unshaded, but do not accept outside the circle shaded
	l6π or 50.3	2	Award I mark for $\pi \times 4^2$ seen or implied. Accept awrt 50.3
	5	I	
6	(0, -4)	I	Must be expressed as a coordinate, do not accept just -4

	$n \ge -1$	Ι	
7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Award I mark for correct first step to solve inequality e.g. $2x < -8$ or $x + 4.5 < 0.5$ seen Award I mark for correct solution seen $x < -4$ Award I mark for clear circle and correct arrow orientation plotted above their solution. Follow through their solution (provided still <) for the 3 rd mark
8	0.3445	2	Accept any equivalent fraction, decimal or percentage condoning rounding Award I mark for $0.53 \times \frac{13}{20}$ seen or implied or $0.47 \times \frac{13}{20} = 0.3055$ or equivalent
9	e.g. $35^2 + 12^2 = 1369$ $37^2 = 1369$ $35^2 + 12^2 = 37^2$ so the triangle is right-angled	2	Award I mark for correct use of Pythagoras' theorem seen. Award full marks for fully correct working.

Year 9 Summer Core Paper Mark Scheme

12	Chooses Bargain Hut with working e.g. Bargain Hut: $20 \times 3.99 = 79.80$ Mega Saver: $30 \times 3.99 \times 0.8 = 95.76$ so Bargain Hut is cheaper	3	Award I mark for correct total price from either shop Award 2 nd mark for correct total price from both shops Award full marks for fully correct working with conclusion.
13	855.32	2	Award I mark for attempt to $800 \times (1.034)^2$ seen or implied or complete attempt to increase 800 by 3.4% once Answer must be rounded to the nearest penny but condone rounding errors
14	831	3	Award I mark for correctly finding the area of at least one triangle (36 mm ²) Award I mark for finding the area of at least two rectangular faces (345, 161 and 253 mm ²)
15	Finds $\angle WPY = 49^{\circ}$	3	Award I mark for forming a correct equation e.g. $x + x + 82 = 180$ Award 2 nd mark for finding $\angle ZPX = 49^{\circ}$
16	625 g	3	Award I mark for 120 % = 750 g seen or implied Award I mark for correct method to find normal size e.g. 750 ÷ 1.2
17	3.98	3	Award I mark for correctly finding the volume of the cuboid i.e. $80 \div 0.67 = 119.4029 \dots$ Award ft I mark for correct method to find the height of the cuboid i.e. "119.4029" \div (3 × 10) Award final mark for awrt 3.98