Question	Answer	Marks	Notes and guidance		
1	288	236	3		Award I mark for correct method.
:---					
2					

Year 9 Autumn Higher Mark Scheme A

6	$-\frac{1}{2}$ or any equivalent value	2	Award I mark for correct method e.g. with wrong scale.
	$y=-\frac{1}{2} x-1$	I	Allow any correct form. Follow through form their gradient
7	100π	2	Award I mark for correct substitution into formula seen or implied e.g. $\frac{1}{3} \times \pi \times 5^{2} \times 12$ or $314.15 \ldots$.
8	Correct perpendicular drawn with construction lines visible	2	Award I mark for correct method.
9	$b=\sqrt{c^{2}-a^{2}}$	2	Award I mark for correct first step i.e. $b^{2}=c^{2}-a^{2}$
	Completes table with $x+2, x+10, x+12$	I	
10	$\begin{aligned} & (x+2)(x+10)-x(x+12) \\ & x^{2}+12 x+20-x^{2}-12 x \\ & 20 \end{aligned}$	2	Award 2 marks for fully correct proof. Award I marks for attempt to multiply both sets of brackets and subtract/compare expressions.
11	Correct region drawn i.e.	3	Award I mark for quarter circle drawn from D. Award I mark for attempt to bisect angle BCD. Award $3^{\text {rd }}$ mark for shading correct region.

Year 9 Autumn Higher Mark Scheme A

12	Indicates True and justifies e.g. $3 \times-\frac{1}{3}=-1$	1	
13	3	2	Award I mark for equation $\pi r^{2} h$ to 72π, substituting h and attempting to find r^{2} or r.
14	Fully correct proof that triangles are congruent e.g. $\begin{aligned} & 180-41-42=97 \\ & 7 \mathrm{~cm}=70 \mathrm{~mm} \end{aligned}$ Both triangles have a side of 7 cm with angles 41 and 72 , so they congruent (ASA).	3	Award I mark for finding missing angle in either triangle. Award $2^{\text {nd }}$ mark for showing sides lengths are the same. Award $3^{\text {rd }}$ mark for stating they are congruent with correct condition.
15	$\frac{3}{8} \geq x \text { or } x \leq \frac{3}{8}$	3	Allow 0.375 for $\frac{3}{8}$ Award I mark for forming correctly inequality $7-5 x \geq 3 x+4 \text { or } 3 x+4 \leq 7-5 x$ Award $2^{\text {nd }}$ mark for isolating x and simplifying constants e.g. $3 \geq 8 x$ Do not penalise if using $>$ and $<$ instead of \geq or \leq.

Year 9 Autumn Higher Paper Mark Scheme B

Question	Answer	Marks	Notes and guidance
I	$\mathrm{A}=(3, \mathrm{I}$)	I	
	$\mathrm{B}=(7,-\mathrm{l})$	1	
2	$2 y+x=12$	I	
3	$£ 408$	3	Award I mark for correctly starting the process of finding the total length of the edges of the tank e.g. $4 \times(3+5+0.5)$ Award I mark for their " 38 " $\times 12$
	12 minutes	2	Award I mark for $60 \div 5$ seen or implied
4		I	
5	$x=30$	I	

Year 9 Autumn Higher Paper Mark Scheme B
$\left.\left.\begin{array}{|c|l|c|l|}\hline & y=2.5 & & \begin{array}{l}\text { Award I mark for any correct first step } \\ \text { to solve the equation e.g. multiply } \\ \text { through by 3 } \\ 2 y+1+12 y=36\end{array} \\ \text { Award 2nd mark for simplifying equation } \\ \text { to I4y } 35\end{array}\right] \begin{array}{l}\text { Award I mark for correct process to } \\ \text { find prime factors i.e. a correct } \\ \text { completed factor tree. } \\ \text { Do not accept a list of 576's prime } \\ \text { factors. }\end{array}\right]$

Year 9 Autumn Higher Paper Mark Scheme B

9	$252 \pi \mathrm{~cm}^{3}$ or $792 \mathrm{~cm}^{3}$	4	Award I mark for calculating the volume of the cylinder $\pi \times 3^{2} \times 20$ Award I mark for calculating the volume of a sphere $\frac{4}{3} \times \pi \times 3^{3}$ Award I mark for find the total volume $180 \pi+36 \pi+36 \pi$ Accept awrt $792 \mathrm{~cm}^{3}$
10	$216 \mathrm{~cm}^{2}$	3	Award I mark for attempt to find x e.g. solving Area of triangle $\times x=168$ Award I mark for attempt to find surface area using their x (or in terms of x
)11		3	Award I mark for calculating scaled distance i.e. $80 \div 20(=4)$ Award I mark for arcs of radii 4 cm draw at each vertex of the rectangle or locus of points 4 cm parallel to each edge accurately drawn. Award full marks complete locus of points 4 cm from rectangle

Year 9 Autumn Higher Paper Mark Scheme B

12		3	Award I mark for an accurate angle bisector constructed for $\angle B C D$ Award I mark for arc of radius 4 cm drawn from B Award full marks for correct region identified.
13	$g=\sqrt{\frac{b-4}{5}}$	2	Award I mark for any correct first step to rearrange formula
14	e.g. Triangle \mathbf{C} is congruent to triangle \mathbf{F} Condition for congruency: SAS Triangle E is congruent to triangle \mathbf{G} Condition for congruency: SSS	4	Award I mark for each correct pair of congruent triangles. Award I mark for the correct conditions of congruency stated with the pair of congruent triangles

Year 9 Spring Higher Paper Mark Scheme

Question	Answer	Marks	Notes and guidance
I	700π	3	Award I mark either area of base (100π)or curved surface area (600π) correctly calculated, allow decimals Award $2^{\text {nd }}$ mark for both correct 2199.11... or rounded implies 2 marks out of 3
2	1.5	3	Award I mark for $450 \div 5$ or 90 seen. Award I mark for correct method to find rate of interest e.g. $90 \div 6000 \times 100 \%$
	Indicates 6000×1.035^{5}	I	Allow any clear indication - circle, underlined, tick etc.
3	1080	2	Award I mark for $20 \%=180$ used to find 100% or 120% seen or implied
4	I2I supported with reasoning	3	Award I mark for either $\angle A E B=65^{\circ}$ or $\angle E A B$ $=56^{\circ}$ seen or implied (could be on diagram) Award $2^{\text {nd }}$ mark if x found to be 121° Award $3^{\text {rd }}$ mark for any fully correct chain of reasoning, with correct mathematical statements throughout

Year 9 Spring Higher Paper Mark Scheme

Year 9 Spring Higher Paper Mark Scheme

7	80	2	Award I mark for correctly substituting m and v into the formula
	$m=\frac{2 K}{v^{2}}$	2	Award I mark for any correct first step taken to rearrange formula e.g. $2 K=m v^{2}$ or $\frac{1}{2} m=\frac{K}{V^{2}}$
8	Indicates "Never True"	I	Allow any clear indication - circle, underlined, tick etc.
	Indicates "Sometimes True"	I	
9	e.g. $4 x+2 y=10 \rightarrow y=5-2 x$, so both have gradient of -2	2	Award I mark for valid attempt to find gradient of both lines Award $2^{\text {nd }}$ mark for fully correct justification
10	e.g.	2	Award I mark for first arc crossing the given line Awards $2^{\text {nd }}$ mark for correct construction at X, allow $\pm 2^{\circ}$ No marks if no arcs seen Award I mark maximum for correct construction seen elsewhere on the line Condone equilateral triangle fully constructed.
11	$3 \frac{1}{3}$	2	Award I mark for answer in any other form e.g. $3.33 \ldots$ or $\frac{10}{3}$

Year 9 Spring Higher Paper Mark Scheme

12	e.g. $\sqrt{0.25}=\sqrt{\frac{1}{4}}=\frac{1}{2}$	2	Award I mark for $\sqrt{0.25}=0.5$
13	$\begin{aligned} & \text { e.g. } A C=\sqrt{12^{2}+5^{2}}(=13) \\ & A G=\sqrt{13^{2}+5^{2}}=13.928 \ldots \text { or } \sqrt{12^{2}+5^{2}+5^{2}} \\ & 13.938 \ldots<14 \end{aligned}$	4	Award I mark for any correct use of Pythagoras' theorem Award $2^{\text {nd }}$ mark for any correct relevant length found e.g. $A C=13 \mathrm{~cm}$ Award $3^{\text {rd }}$ mark for $2^{\text {nd }}$ use of to find $A G=$ 13.928 (may get $2^{\text {nd }}$ and $3^{\text {rd }}$ mark in one step if using $\sqrt{12^{2}+5^{2}+5^{2}}$) Award final mark for comparison with 14 cm
14		3	Award I mark correct size and new position of rectangle PQRS. Award I mark for arc drawn of radius PM centre P Award $3^{\text {rd }}$ mark for arc ending on the "new" SR

Year 9 Spring Higher Paper Mark Scheme B

Question	Answer				Marks	Notes and guidance
I					2	Triangle B Award I mark a correct translation of either the horizontal or vertical component of $\binom{-2}{-3}$ Triangle C Follow through their B Award I mark for a correct reflection of their B in the line $x=k$ where $k \neq-1$
2	$a=7$				2	Award I mark for correct substitution of (2, II) into $y=a x-3$ i.e. $I I=2 a-3$
3	1000				2	Award I mark for correct method to find the whole (3000) seen or implied.
	0.5\%				2	Award I mark for correct method e.g. $\frac{40}{8000} \times$ IOO seen or implied

Year 9 Spring Higher Paper Mark Scheme B

	Increased by 8\%	I	
4	Different e.g. because this would a decrease by 12\%	I	Accept any equivalent correct explanation Do not accept 'Different' with no or incorrect explanation
5	Amir	3	Award I mark for correct method to obtain Eva or Amir's earned interest i.e. $20 \times 5=100$ or $\left(1000 \times 1.05^{2}\right)-1000=102.5(0)$ Award $2^{\text {nd }}$ mark for both values correct. Award Imark for correct conclusion based on their values.
6	The 400 g bag	3	Award I mark for attempt to find two comparable vales e.g. cost of I kg or comparing weight of $£ 6$ worth of potatoes etc. Award I mark for two correct comparable values found Award final mark for correct conclusion., must be justified
7	$\angle \mathrm{BDC}=60^{\circ}$ (angles in an equilateral triangle are equal) $\angle B D A=120^{\circ}$ (angles on a straight line sum to 180° $\angle \mathrm{BAD}=\frac{180-120}{2}=30^{\circ}$ (base angles in an isosceles triangle are equal)	3	Award I mark for $\angle \mathrm{BDC}$ found with correct reason stated. Award I mark for $\angle B D A$ found with correct reason stated. Award full marks for fully correct proof with correct reasons.

Year 9 Spring Higher Paper Mark Scheme B

Year 9 Spring Higher Paper Mark Scheme B

10	$x^{3}+10 x^{2}+31 x+30$	3	Award I mark for a correct method to find the product of any two linear expressions (must have at least 3 out of 4 terms correct) Award $2^{\text {nd }}$ mark for a complete method to obtain all terms, half of which are correct
II	e.g. QS (shared) $P Q=Q R$ (given) $P S=S R$ (given) \therefore PQS, QRS are congruent with conditions SSS	3	Award I mark for stating a correct pair of equal sides with reasons. Award $2^{\text {nd }}$ mark for stating two correct pairs of equal sides with reasons. Award full marks for fully correct proof with SSS condition Note: Apply same approach when awarding marks for an alternative approach e.g. SAS
12	-343	1	
	0.3, $\frac{17}{5}, \sqrt[3]{-8}$	2	Award I mark for any two correct values indicated
	$4 \sqrt{5}$	2	Award I mark for writing $\sqrt{80}=\sqrt{a} \times \sqrt{b}$ where a is a square number and $a b=80$
13	Diameter of circle with centre $Y=32$ Diameter of circle with centre $Z=48$ $X Y=24 \mathrm{~cm}, X Z=32 \mathrm{~cm}, Y Z=40 \mathrm{~cm}$ $X Y^{2}+X Z^{2}=1600=40^{2}=Y Z^{2}$ The lengths of the triangle satisfy Pythagoras' theorem $\therefore \mathrm{XYZ}$ is a right-angled triangle	4	Award I mark for correctly working out the other two diameters. Award I mark correctly working out the lengths of the sides of $X Y Z$ Award I mark for correct use of Pythagoras' theorem Award final mark for fully correct answer with conclusion.

Year 9 Summer Higher Paper Mark Scheme

Question	Answer	Marks	Notes and guidance
1	108	2	Award I mark for $\frac{1}{3} \times 6^{2} \times 9$ seen or implied.
2	$-\frac{4}{3}$	2	Accept any equivalent form Award I mark for correct process to make y the subject i.e. $y=\frac{8}{3}-\frac{4}{3} x$
3	21600	2	Award I mark for $20000 \times 1.2 \times 0.9$ or equivalent complete method
4	$\binom{-2}{-8}$	2	Award I mark for shape C correctly positioned $(-I, 3),(1,4),(-2,3),(-2,4)$ or translation vector of A to C seen $\binom{2}{8}$
5	120	2	Award I mark for $\sqrt{5} \times \sqrt{5}=5$ seen or implied.
6	$r=\sqrt{\frac{A}{4 \pi}}$	2	Award I mark for correct first step to rearrange the formula e.g. divide both sides by 4π or square root both sides
7	e.g. Exterior angle: $180^{\circ}-160^{\circ}=20^{\circ}$ No. of sides: $360^{\circ} \div 20^{\circ}=18$ Perimeter: $18 \times 12=216 \mathrm{~cm}$ $216 \mathrm{~cm}=2.16 \mathrm{~m}>2 \mathrm{~m}$	3	Award I mark for a correct process to calculate the number of sides Award I mark for a correct process to calculate the perimeter Award full marks for fully correct method with conclusion
8	$\begin{aligned} & x, x+1, x+2 \\ & x+x+1+x+2 \equiv 3 x+3 \equiv 3(x+1) \end{aligned}$	2	Award I mark for correct first step e.g. attempt to sum expressions for 3 consecutive integers Award $2^{\text {nd }}$ mark for fully correct proof

Year 9 Summer Higher Paper Mark Scheme

Year 9 Summer Higher Paper Mark Scheme

12	Sometimes true	I	
	Sometimes true	I	
13	$\frac{y}{x}$ with justification	1	Accept any correct explanation e.g. $\frac{3}{2}>\frac{2}{3}$ Do not accept $\frac{y}{x}$ with no or incorrect explanation.
	$a=12$	2	Award I mark for scaling ratios or forming equation from ratios e.g. $\frac{a}{18}=\frac{8}{a}$
14	e.g. Run: $7 \mathrm{~m} / \mathrm{s}=420 \mathrm{~m} / \mathrm{min}=25200 \mathrm{~m} / \mathrm{h}=25.2$ $\mathrm{km} / \mathrm{h}>20 \mathrm{~km} / \mathrm{h}$, so running is faster OR Bike: $20 \mathrm{~km} / \mathrm{h}=20000 \mathrm{~m} / \mathrm{h}=20000 \div 3600 \mathrm{~m} / \mathrm{s}=$ $5.55 . . \mathrm{m} / \mathrm{s}<7 \mathrm{~m} / \mathrm{s}$, so running is faster	3	Award I mark correctly converting units of distance or time to make comparison Award $2^{\text {nd }}$ mark for correctly converting both units to make comparison Award full marks for correct conclusion with supporting work.
15		2	Award I mark for correct table of values or
	$x=3, y=2$	I	Follow through their intersection point

Year 9 Summer Higher Paper Mark Scheme

16	e.g. $\angle A B Y=\angle X C D$ $A B=C D($ given $)$ equal) (opposite sides of a parallelogram are $\angle B A D=\angle B C D$ (opposite angles of a parallelogram are equal) So $\triangle A B Y$ and $\triangle X C D$ are congruent with (AAS)	3	Award I mark for any correct equality with reason Award $2^{\text {nd }}$ for a second correct equality with reason
Award full marks for complete proof with AAS condition stated			

Question	Answer	Marks	Notes and guidance
1	Indicates " $2 \frac{1}{2} \%$ of $£ 450$ " with justification e.g. $\begin{aligned} & \text { 2- } \% \text { of } £ 450=£ 11.25 \\ & 250 \% \text { of } £ 1.20=£ 3,11.25>3 \end{aligned}$	2	Accept any full justification Award I mark for attempt to work out both values with at least one of them correctly found
2	225	2	Award I mark for 15 seen as HCF of 45 and 75 OR attempt to find x by squaring any other common factor (greater than I) of 45 and 75
3	e.g. $\angle A B E=\angle A C D$ (corresponding angles are equal) $\angle A E B=\angle A D C$ (corresponding angles are equal) $\angle B A E=\angle C A D$ (common), so the triangles are similar as they have the same angles	2	Award I mark for partial justification e.g. at least two pairs of angles identified as equal
	8	1	Award I mark for any correct use of scale factor e.g. $E D=2 \mathrm{~cm}$ seen or attempt to find $12 \times \frac{6}{9}$ or equivalent
4	$x=10, y=0$	3	Award I mark for correct reflection of triangle A shown on the grid Award $2^{\text {nd }}$ mark for either x or y correct
5	Indicates the middle graph on the top row	1	

Year 9 Summer Higher Paper Mark Scheme B

6	Indicates $\times 0.85{ }^{3}$	1	
7		2	Award I mark for either 0.3 or 0.6 correctly place
	0.42	2	Award I mark for attempt to calculate $0.7 \times$ their 0.6
8	10500	I	Award I mark for I m${ }^{3}=1000000 \mathrm{~cm}^{3}$ seen or implied

Year 9 Summer Higher Paper Mark Scheme B

9	28	3	Award I mark for complete correct method to find number of sweets each person has e.g. setting up equation $4 x-2=3 x+2$ or equivalent Award $2^{\text {nd }}$ mark for correct method to solve equation, or equivalent, e.g. one 'part' found to be 4 or $x=4$ seen or implied
	$x=4, y=2$	I	Both values must be correct
10	$y=-\frac{1}{2} x+4$	2	Allow $y=4-\frac{1}{2} x$ Award I mark for correct first step to rearrange i.e. $2 y=8-x$ or $y+\frac{1}{2} x=4$ seen
I I	12	2	Award I mark for attempt to calculate $360 \div(180-150)$
12	e.g. $\begin{aligned} & \sqrt{6^{2}+6^{2}}=\sqrt{72} \\ & \sqrt{72+6^{2}}=\sqrt{108}>10 \end{aligned}$	I	Must compare with 10 for full marks Allow $\sqrt{6^{2}+6^{2}+6^{2}}=\sqrt{108}$ to find the length of the longest diagonal Award 2 marks for $\sqrt{108}$ found Award I mark for any correct use of Pythagoras' theorem
13	27	I	Award I mark for correct rearrangement to solve i.e. $30-x=3$ or $10-1=\frac{1}{3} x$ seen
14	e.g. $(2 n)^{3}=8 n^{3}=4 \times 2 n^{3}$	2	Award I mark for attempt to cube general even number e.g. $(2 n)^{3}$

Year 9 Summer Higher Paper Mark Scheme B

15	Indicates "No" with justification e.g. $\begin{aligned} & V=\frac{1}{3} \times \pi \times 6 \times 6 \times 15 \\ & V=180 \pi \\ & 180 \times 4=720<1000 \end{aligned}$ $\pi<4$ so volume is less than I litre	3	Award I mark for using formula with correct dimensions Award $2^{\text {nd }}$ mark for using an estimate for π to find the volume award $3^{\text {rd }}$ mark for full clear justification (e.g. "Using $\pi \approx 3$ gives $V \approx 540$, nowhere near 1000")
16	e.g.	3	Award I mark for correct construction of bisector of angle CAB or an arc/circle of radius 5 cm from at least one of A and C Award $2^{\text {nd }}$ mark for arc centre C radius 5 cm that intersects with their bisector Award $3^{\text {rd }}$ mark for P clearly indicated

