

Question	Answer	Marks	Notes and guidance
	288	2	Award I mark for correct method.
I	336	3	Award 2 marks for attempt to find areas of all five faces and find the total, including correct formula for area of triangle. Award I mark for area of at least 3 faces.
2	Correct graph of $y = 4x - 3$ drawn	4	Award 2 marks for table/list of values with at least three points correct. Award I mark for one correct point.
2		4	Award 2 marks for fully correct graph. Award I mark for at least 3 of their values correctly plotted on a pair of axes.
3	y = 6 - 2x	2	Accept any equivalent form with y as the subject e.g. $y = \frac{12-4x}{2}$ Award I mark for correct first step e.g. 2y = 12 - 4x or $2x + y = 6$
	-2		Follow through from their answer to the first part.
4	Indicates " x is inversely proportional to y "	Ι	Accept any clear indication – tick, circles, underline etc.
	25	I	
5	8 > <i>m</i> or <i>m</i> < 8	2	Award I mark for fully correct method or $m = 8$

	$-\frac{1}{2}$ or any equivalent value	2	Award I mark for correct method e.g. with wrong scale.
0	$y = -\frac{1}{2}x - 1$	Ι	Allow any correct form. Follow through form their gradient
7	100π	2	Award I mark for correct substitution into formula seen or implied e.g. $\frac{1}{3} \times \pi \times 5^2 \times 12$ or 314.15
8	Correct perpendicular drawn with construction lines visible	2	Award I mark for correct method.
9	$b = \sqrt{c^2 - a^2}$	2	Award I mark for correct first step i.e. $b^2 = c^2 - a^2$
	Completes table with $x + 2$, $x + 10$, $x + 12$	I	
10	(x+2)(x+10) - x(x+12) $x^{2} + 12x + 20 - x^{2} - 12x$ 20	2	Award 2 marks for fully correct proof. Award 1 marks for attempt to multiply both sets of brackets and subtract/compare expressions.
11	Correct region drawn i.e.	3	Award I mark for quarter circle drawn from D. Award I mark for attempt to bisect angle BCD. Award 3 rd mark for shading correct region.

12	Indicates True and justifies e.g. $3 \times -\frac{1}{3} = -1$	I	
13	3	2	Award I mark for equation $\pi r^2 h$ to 72π , substituting h and attempting to find r^2 or r .
	Fully correct proof that triangles are congruent e.g.		Award I mark for finding missing angle in either triangle.
14	 180 - 41 - 42 = 97 7 cm = 70 mm Both triangles have a side of 7 cm with angles 41 and 72, so they congruent (ASA). 	3	Award 2 nd mark for showing sides lengths are the same. Award 3 rd mark for stating they are congruent with correct condition.
15	$\frac{3}{8} \ge x \text{ or } x \le \frac{3}{8}$	3	Allow 0.375 for $\frac{3}{8}$ Award I mark for forming correctly inequality $7 - 5x \ge 3x + 4$ or $3x + 4 \le 7 - 5x$ Award 2^{nd} mark for isolating x and simplifying constants e.g. $3 \ge 8x$ Do not penalise if using > and < instead of > or <.

Question	Answer	Marks	Notes and guidance
I	700π	3	Award I mark either area of base (100π) or curved surface area (600π) correctly calculated, allow decimals Award 2 nd mark for both correct 2199.11 or rounded implies 2 marks out of 3
2	1.5 Indicates 6000 × 1.035 ⁵	3	Award I mark for $450 \div 5$ or 90 seen. Award I mark for correct method to find rate of interest e.g. $90 \div 6000 \times 100\%$ Allow any clear indication – circle, underlined,
3	1080	2	Award I mark for 20% = 180 used to find 100% or 120% seen or implied
4	121 supported with reasoning	3	Award I mark for either $\angle AEB = 65^{\circ}$ or $\angle EAB = 56^{\circ}$ seen or implied (could be on diagram) Award 2 nd mark if x found to be 121° Award 3 rd mark for any fully correct chain of reasoning, with correct mathematical statements throughout

Year 9 Spring Higher Paper Mark Scheme

	Q Q -7 -8 -5 -4 -3 -2 -1 0 2 3 4 5 6 7 × x		Award I mark for shape P correctly reflected through $x = -1$ to give shape Q Award I mark for their shape Q correctly reflected through the x-axis to give shape R
5	R -1 -1	3	
	Rotation 180° about (–1, 0)		Award I mark correctly describing single transformation of shape P to their shape R provided this is a rotation
6	10 800	3	Award I mark for any correct method to find the car value after 1^{st} year e.g. $15\ 000 \times 0.8$ Award I mark for any correct method to find the car value after 2^{nd} year e.g. their $12\ 000 \times 0.9$
	35%	2	Award I mark for any correct method to find 20 000 – 13 000 as a percentage of 20 000

Year 9 Spring Higher Paper Mark Scheme

	80	2	Award I mark for correctly substituting m and v into the formula
7	$m = \frac{2K}{v^2}$	2	Award I mark for any correct first step taken to rearrange formula e.g. $2K = mv^2$ or $\frac{1}{2}m = \frac{K}{V^2}$
8	Indicates "Never True"	Ι	Allow any clear indication – circle, underlined,
	Indicates "Sometimes True"		tick etc.
9	e.g. $4x + 2y = 10 \rightarrow y = 5 - 2x$, so both have gradient of -2	2	Award I mark for valid attempt to find gradient of both lines Award 2 nd mark for fully correct justification
10	e.g.	2	Award I mark for first arc crossing the given line Awards 2^{nd} mark for correct construction at X, allow $\pm 2^{\circ}$ No marks if no arcs seen Award I mark maximum for correct construction seen elsewhere on the line Condone equilateral triangle fully constructed.
11	$3\frac{1}{3}$	2	Award I mark for answer in any other form e.g. 3.33 or $\frac{10}{3}$

White Rose Maths

Year 9 Spring Higher Paper Mark Scheme

12	e.g. $\sqrt{0.25} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	2	Award I mark for $\sqrt{0.25} = 0.5$
13	e.g. $AC = \sqrt{12^2 + 5^2} (= 13)$ $AG = \sqrt{13^2 + 5^2} = 13.928 \dots \text{ or } \sqrt{12^2 + 5^2 + 5^2}$ $13.938 \dots < 14$	4	Award I mark for any correct use of Pythagoras' theorem Award 2 nd mark for any correct relevant length found e.g. AC = 13 cm Award 3 rd mark for 2 nd use of to find AG = 13.928 (may get 2 nd and 3 rd mark in one step if using $\sqrt{12^2 + 5^2 + 5^2}$) Award final mark for comparison with 14 cm
14	R Q M P Ground	3	Award I mark correct size and new position of rectangle PQRS. Award I mark for arc drawn of radius PM centre P Award 3 rd mark for arc ending on the "new" SR

Year 9 Summer Higher Paper Mark Scheme

Question	Answer	Marks	Notes and guidance
I	108	2	Award I mark for $\frac{1}{3} \times 6^2 \times 9$ seen or implied.
2	$-\frac{4}{3}$	2	Accept any equivalent form Award I mark for correct process to make y the subject i.e. $y = \frac{8}{3} - \frac{4}{3}x$
3	21600	2	Award I mark for $20000 \times 1.2 \times 0.9$ or equivalent complete method
4	$\begin{pmatrix} -2\\ -8 \end{pmatrix}$	2	Award I mark for shape C correctly positioned (-1, 3), (1, 4), (-2, 3), (-2, 4) or translation vector of A to C seen $\binom{2}{8}$
5	120	2	Award I mark for $\sqrt{5} \times \sqrt{5} = 5$ seen or implied.
6	$r = \sqrt{\frac{A}{4\pi}}$	2	Award I mark for correct first step to rearrange the formula e.g. divide both sides by 4π or square root both sides
7	e.g. Exterior angle: $180^{\circ} - 160^{\circ} = 20^{\circ}$ No. of sides: $360^{\circ} \div 20^{\circ} = 18$ Perimeter: $18 \times 12 = 216$ cm 216 cm = 2.16 m > 2 m	3	Award I mark for a correct process to calculate the number of sides Award I mark for a correct process to calculate the perimeter Award full marks for fully correct method with conclusion
8	x, x + 1, x + 2 $x + x + 1 + x + 2 \equiv 3x + 3 \equiv 3(x + 1)$	2	Award I mark for correct first step e.g. attempt to sum expressions for 3 consecutive integers Award 2 nd mark for fully correct proof

Year 9 Summer Higher Paper Mark Scheme

9	e.g. $\sqrt{10^2 - 6^2} = \sqrt{64} = 8$ $x = \sqrt{8^2 + 8^2} = \sqrt{128}$ $\sqrt{121} < \sqrt{128} < \sqrt{144}$ So $11 < x < 12$	3	Award I mark for correct use of Pythagoras' theorem to find missing side in first triangle Award 2^{nd} mark for correct use of Pythagoras' theorem in second triangle Award full marks for clear justification that x is between 11 and 12
10	12	2	Award I mark for correct method to find scale factor between $\triangle ABC$ and $\triangle DEF$ (1.5)
11	First arrow Second arrow 0.8 Hits the target 0.8 Hits the target 0.2 Does not hit the target	2	Award I mark for 'First arrow' probabilities correctly labelled Award full marks for fully correct tree Accept equivalent probabilities
	0.04	2	Award I mark for 0.2×0.2 seen or implied.

10	Sometimes true	Ι	
I Z	Sometimes true	I	
13	$\frac{y}{x}$ with justification	I	Accept any correct explanation e.g. $\frac{3}{2} > \frac{2}{3}$ Do not accept $\frac{y}{x}$ with no or incorrect explanation.
	<i>a</i> = 12	2	Award I mark for scaling ratios or forming equation from ratios e.g. $\frac{a}{18} = \frac{8}{a}$
14	e.g. Run: 7 m/s = 420 m/min = 25 200 m/h = 25.2 km/h > 20 km/h, so running is faster OR Bike: 20 km/h = 20 000 m/h = 20000 ÷ 3600 m/s = 5.55 m/s < 7 m/s, so running is faster	3	Award I mark correctly converting units of distance or time to make comparison Award 2 nd mark for correctly converting both units to make comparison Award full marks for correct conclusion with supporting work.
15		2	Award I mark for correct table of values or
	x = 3, y = 2		Follow through their intersection point

Year 9 Summer Higher Paper Mark Scheme

16	e.g. $\angle ABY = \angle XCD$ (given) AB = CD (opposite sides of a parallelogram are equal) $\angle BAD = \angle BCD$ (opposite angles of a parallelogram are equal)	3	Award I mark for any correct equality with reason Award 2 nd for a second correct equality with reason Award full marks for complete proof with AAS condition stated
	So \triangle ABY and \triangle XCD are congruent with (AAS)		